The Effect of Annealing on sSEBS/Polyrotaxanes Electrolyte Membranes for Direct Methanol Fuel Cells

  • Published : 2009.10.25

Abstract

Solution casting films of sulfonated poly[styrene-b-(ethylene-r-butylene)-b-styrene] copolymer (sSEBS)-based composite membranes that contained different amounts of organic, nanorod-shaped polyrotaxane were annealed at various temperatures for 1 h. The films' properties were characterized with respect to their use as polymer electrolyte membranes in direct methanol fuel cells (DMFCs). Different aspect ratios of polyrotaxane were prepared using the inclusion-complex reaction between $\alpha$-cyclodextrin and poly(ethylene glycol). The presence of the organic polyrotaxane inside the membrane changed the morphology during the membrane preparation and reduced the transport of methanol. The conductivity and methanol permeability of the composite membranes decreased with increasing polyrotaxane content, while the annealing temperature increased. All of the sSEBS-based, polyrotaxane composite membranes annealed at $140^{\circ}C$ showed a higher selectivity parameter, suggesting their potential usage for DMFCs.

Keywords

References

  1. C. H. Lee, K. A. Min, H. B. Park, Y. T. Hong, B. O. Jung, and Y. M. Lee, J. Membr. Sci., 303, 258 (2007) https://doi.org/10.1016/j.memsci.2007.07.026
  2. W. Lee, H. Kim, and H. Lee, J. Membr. Sci., 320, 78 (2008) https://doi.org/10.1016/j.memsci.2008.03.066
  3. V. Tricoli, N. Carretta, and M. Bartolozzi, J. Electrochem. Soc., 147, 1286 (2000) https://doi.org/10.1149/1.1393351
  4. D. E. Curtin, R. D. Lousenburg, T. J. Henry, P. C. Tangeman, and M. E. Tisack, J. Power Sources, 131, 41 (2004) https://doi.org/10.1016/j.jpowsour.2004.01.023
  5. D. H. Jung, Y. B. Myoung, S. Y. Cho, D. R. Shin, and D. H. Peck, Int. J. Hydrogen Energy, 26, 1263 (2001) https://doi.org/10.1016/S0360-3199(01)00065-9
  6. D. H. Kim and S. C. Kim, Macromol. Res., 16, 457 (2008) https://doi.org/10.1007/BF03218545
  7. D. Kim, M. A. Scibioh, S. Kwak, I.-H. Oh, and H. Y. Ha, Electrochem. Commun., 6, 1069 (2004) https://doi.org/10.1016/j.elecom.2004.07.006
  8. V. Baglio, A. S. Aricò, A. D. Blasi, V. Antonucci, P. L. Antonucci, S. Licoccia, E. Traversa, and F. S. Fiory, Electrochim. Acta, 50, 1241 (2005) https://doi.org/10.1016/j.electacta.2004.07.049
  9. I. Honma, H. Nakajima, O. Nishikawa, T. Sugimoto, and S. Nomura, Solid State Ionics, 162-163, 237 (2003) https://doi.org/10.1016/S0167-2738(03)00260-1
  10. J. Won and Y. S. Kang, Macromol. Symp., 204, 79 (2003) https://doi.org/10.1002/masy.200351408
  11. M.-K. Song, S.-B. Park, Y.-T. Kim, K.-H. Kim, S.-K. Min, and H.-W. Rhee, Electrochem. Acta, 50, 639 (2004) https://doi.org/10.1016/j.electacta.2003.12.078
  12. G. Y. Moon and J. W. Rhim, Macromol. Res., 16, 524 (2008) https://doi.org/10.1007/BF03218554
  13. D. W. Kim, H.-S. Choi, C. Lee, A. Blumstein, and Y. Kang, Electrochem. Acta, 50, 659 (2004) https://doi.org/10.1016/j.electacta.2004.01.125
  14. J. Won, S. W. Choi, Y. S. Kang, H. Y. Ha, I.-H. Oh, H. S. Kim, K. T. Kim, and W. H. Jo, J. Membr. Sci., 214, 245 (2003) https://doi.org/10.1016/S0376-7388(02)00555-0
  15. S. J. Lue, T. S. Shih, and T. C. Wei, Korean J. Chem. Eng., 23, 441 (2006) https://doi.org/10.1007/BF02706747
  16. Y. F. Lin, C.-Y. Yen, C.-H. Hung, Y.-H. Hsiao, and C.-C. M. Ma, J. Power Sources, 168, 162 (2007) https://doi.org/10.1016/j.jpowsour.2007.02.079
  17. I. Honma, S. Hirakawa, K. Yamada, and J. M. Bae, Solid State Ionics, 118, 29 (1999) https://doi.org/10.1016/S0167-2738(98)00450-0
  18. S. P. Nunes, B. Ruffmann, E. Rikowski, S. Vetter, and K. Richau, J. Membr. Sci., 203, 215 (2002) https://doi.org/10.1016/S0376-7388(02)00009-1
  19. D. S. Kim, M. D. Guiver, M. Y. Seo, H. I. Cho, D. H. Kim, J. W. Rhim, G. Y. Moon, and S. Y. Nam, Macromol. Res., 15, 412 (2007) https://doi.org/10.1007/BF03218807
  20. D. S. Kim, M. D. Guiver, M. Y. Seo, H. I. Cho, D. H. Kim, J. W. Rhim, G. Y. Moon, and S. Y. Nam, Macromol. Res., 15, 412 (2007) https://doi.org/10.1007/BF03218807
  21. A. Harada and M. KAachi, Macromolecules, 23, 2821 (1990) https://doi.org/10.1021/ma00212a039
  22. H. D. Cho, J. Won, and H. Y. Ha, Renewable Energy, 33, 248 (2008) https://doi.org/10.1016/j.renene.2007.05.013
  23. R. I. Blackwell and K. A. Maurutz, Polymer, 45, 3457 (2004) https://doi.org/10.1016/j.polymer.2004.02.010
  24. J. Won, S. M. Ahn, H. D. Cho, J. Y. Ryu, H. Y. Ha, and Y. S. Kang, Macromol. Res., 15, 459 (2007) https://doi.org/10.1007/BF03218814
  25. M. A. Vargas, R. A. Vargas, and B.-E. Mellander, Electrochim. Acta, 44, 4227 (1999) https://doi.org/10.1016/S0013-4686(99)00137-1
  26. J. H. Lee, J. Won, I.-H. Oh, H. Y. Ha, E. A. Cho, and Y. S. Kang, Macromol. Res., 14, 101 (2006) https://doi.org/10.1007/BF03219075
  27. A. Harada, J. Li, and M. Kamachi, Macromolecules, 26, 5690 (1993)
  28. H. D. Cho, J. Won, H. Y. Ha, and Y. S. Kang, Macromol. Res., 14, 214 (2006) https://doi.org/10.1007/BF03218512
  29. G. E. Wnek, J. N. Rider, J. M. Serpico, and A. G. Einset, Proceedings of the first international symposium on proton conducting membrane fuel cells, Electrochemical Society, 1995, p 247
  30. X. Lu, W. P. Steckle, and R. A. Weiss, Macromolecules, 26, 6525 (1993) https://doi.org/10.1021/ma00076a033
  31. K. Yano, A. Usuki, and A. Okada, J. Polym. Sci. Part A: Polym. Chem., 35, 2289 (1997) https://doi.org/10.1002/(SICI)1099-0518(199708)35:11<2289::AID-POLA20>3.0.CO;2-9