• Title/Summary/Keyword: Organic matrix-free

Search Result 23, Processing Time 0.031 seconds

Advanced Low-k Materials for Cu/Low-k Chips

  • Choi, Chi-Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.71-71
    • /
    • 2012
  • As the critical dimensions of integrated circuits are scaled down, the line width and spacing between the metal interconnects are made smaller. The dielectric film used as insulation between the metal lines contributes to the resistance-capacitance (RC) time constant that governs the device speed. If the RC time delay, cross talk and lowering the power dissipation are to be reduced, the intermetal dielectric (IMD) films should have a low dielectric constant. The introduction of Cu and low-k dielectrics has incrementally improved the situation as compared to the conventional $Al/SiO_2$ technology by reducing both the resistivity and the capacitance between interconnects. Some of the potential candidate materials to be used as an ILD are organic and inorganic precursors such as hydrogensilsequioxane (HSQ), silsesquioxane (SSQ), methylsilsisequioxane (MSQ) and carbon doped silicon oxide (SiOCH), It has been shown that organic functional groups can dramatically decrease dielectric constant by increasing the free volume of films. Recently, various inorganic precursors have been used to prepare the SiOCH films. The k value of the material depends on the number of $CH_3$ groups built into the structure since they lower both polarity and density of the material by steric hindrance, which the replacement of Si-O bonds with Si-$CH_3$ (methyl group) bonds causes bulk porosity due to the formation of nano-sized voids within the silicon oxide matrix. In this talk, we will be introduce some properties of SiOC(-H) thin films deposited with the dimethyldimethoxysilane (DMDMS: $C_4H_{12}O_2Si$) and oxygen as precursors by using plasma-enhanced chemical vapor deposition with and without ultraviolet (UV) irradiation.

  • PDF

Comparison of physical properties and air permeability in the sawdust during wetting and drying procedure (습윤 및 건조과정에서의 톱밥내 물리적 성상과 공기투과성의 변화)

  • Kim, Byung Tae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.4
    • /
    • pp.103-111
    • /
    • 2009
  • Moisture is one of the important design factors that affects to the changes of physical properties and air permeability in the composting matrix. This study examines the effects of moisture during the wetting and drying procedure on physical properties like bulk density, particle size, free air space and air permeability in the sawdust used as the bulking agent in composting process. During both procedures of wetting and drying of the water, with increasing moisture content, bulk density and particle size increased, but FAS decreased. In the range of near 40 to 60% moisture content on a wet basis, particle size and FAS in wetting procedure were larger and higher than those in drying procedure. During wetting procedure, pressure drop continuously decreased ranging from near 20 to 60% moisture content, despite of decreasing FAS as a consequence of increasing moisture, and then over the range of 60% moisture content, pressure drop rapidly increased to the saturated moisture condition while the pore space was filled with the water. On the other hand, during drying procedure, pressure drop decreased from the saturated condition to 40% moisture content. In the recommended range of 50 to 60% moisture content for composting operation, pressure drop in wetting procedure were lower than in drying procedure. For the enhancement of the air permeability in the composting matrix, the wetting procedure was proper than the drying procedure, and the optimum moisture content for the efficient composting operation was appeared to be near 60%.

  • PDF

A Study on the Blue Fluorescence Characteristics of Silica Nanoparticles with Different Particle Size (실리카 나노 입자의 크기에 따른 청색 형광 특성 연구)

  • Yoon, Ji-Hui;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.1-6
    • /
    • 2019
  • Organic dye-doped silica nanoparticles are used as a promising nanomaterials for bio-labeling, bio-imaging and bio-sensing. Fluorescent silica nanoparticles(NPs) have been synthesized by the modified $St{\ddot{o}}ber$ method. In this study, dye-free fluorescent silica NPs of various sized were synthesized by Sol-Gel process as the modified $St{\ddot{o}}ber$ method. The functional material of APTES((3-aminopropyl)triethoxysilane) was added as an additive during the Sol-Gel process. The as-synthesized silica NPs were calcined at $400^{\circ}C$ for 2 hours. The surface morphology and particle size of the as-synthesized silica NPs were characterized by field-emission scanning electron microscopy. The fluorescent characteristics of the as-synthesized silica NPs was confirmed by UV lamp irradiation of 365 nm wavelength. The photoluminescence (PL) of the as-synthesized silica NPs with different size was analyzed by fluorometry. As the results, the as-synthesized silica NPs exhibits same blue fluorescent characteristics for different NPs size. Especially, as increased of the silica NPs size, the intensity of PL was decreased. The blue fluorescence of dye-free silica NPs was attributed to linkage of $NH_2$ groups of the APTES layer and oxygen-related defects in the silica matrix skeleton.

Synthesis and Characterization of Covalently Cross-Linked SPEEK/Cs-substituted MoSiA/Ceria Composite Membranes with MoSiA for Water Electrolysis (MoSiA를 이용한 수전해용 공유가교 SPEEK/Cs-MoSiA/Ceria복합막의 제조 및 성능 연구)

  • SEO, HYUN;SONG, YU-RI;OH, YUN-SUN;MOON, SANG-BONG;CHUNG, JANG-HOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.6
    • /
    • pp.524-531
    • /
    • 2015
  • To improve the electrochemical and mechanical characteristics, engineering plastic of the sulfonated polyether ether ketone (SPEEK) as polymer matrix was prepared in the sulfonation reaction of polyether ether ketone (PEEK). The SPEEK organic-inorganic blended composite membranes were prepared by sol-gel casting method. It was loaded with the highly dispersed ceria and cesium-substituted molybdosilicic acid (Cs-MoSiA) and 1,4-diiodobutane which was cross-linking agent contents of $10{\mu}L$. Cs-MoSiA was added to increase proton conductivity. Ceria ($CeO_2$) was used as a free radical scavenger which degrade the membrane in polymer electrolyte membrane water elctrolysis (PEMWE). In conclusion, CL-SPEEK/Cs-MoSiA/Ceria 1% composite membrane showed high proton conductivity 0.2104 S/cm at $25^{\circ}C$ which was better than Nafion 117 membrane.

The Synthesis and Characteristics of Covalently Cross-Linked SPEEK/Cs-substituted TPA/CeO2 Composite Membranes for PEMWE (PEMWE를 위한 Cs치환에 따른 공유가교 SPEEK/Cs(x)-TPA/Ceria막의 합성 및 특성 연구)

  • Hwang, Sungha;Park, Daeyoung;Oh, Seunghee;Yoon, Daejin;Oh, Yunsun;Seo, Hyeon;Kang, Aansoo;Moon, Sangbong;Chung, Janghoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.2
    • /
    • pp.151-160
    • /
    • 2014
  • CL-SPEEK/Cs-TPA/$CeO_2$ composite membrane was prepared for polymer electrolyte membrane water electrolysis (PEMWE). In order to improve the electrochemical, mechanical, durabilities and electrocatalytic characteristics, engineering plastic of polyether ether ketone (PEEK) as polymer matrix was sulfonated and the organic-inorganic blend composite membranes was prepared by loading cesium-substituted tungstophosphoric acid (Cs-TPA) by titration method with cross-linking agent contents of 0.01mL. Ceria ($CeO_2$) was used to scavenge free radicals which attack the membrane in the PEMWE circumstance and to increase the duration of the membrane. CL-SPEEK/$Cs_{(1)}$-TPA/CeriaIn conclusion, 1% membrane showed the optimum results such as 0.119 S/cm at $80^{\circ}C$ of proton conductivity and 62MPa of tensile strength.

Oxide semiconductor thin film transistors for next generation displays

  • Park, Jin-Seong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.60.2-60.2
    • /
    • 2012
  • 기술의 발전이 비약적으로 성장하면서, 소비자의 요구는 빠르게 변하고 있다. 전자 소자를 응용한 제품 시장은 매해를 거듭할 수록 빠른 속도로 성능을 향상시키고 있다. 이에 따라 디스플레이 시장에서 가장 큰 관심은 작은 화면에서도 높은 해상도를 요구하고, 수광형의 구동방식이 아닌 능동형 구동방식을 갖는 AMOLED (Active Matrix Organic Light Emitted Diode)를 선호하고 있으며, 빠른 응답속도 기반을 갖는 표시소자를 요구하고 있다. 제품 생산자들의 고민은 기존의 비정질 실리콘 기반의 LCD (Liquid crystal display) 구동소자와 공정을 이용하여 소비자의 욕구에 접근하기가 점점 어려워지고 있다. 최근 이러한 문제점을 해결하고자 하는 노력들중에서 산화물 반도체 재료와 이를 이용한 박막 트랜지스터 개발이 큰 관심을 갖고 있다. 최근 InGaZnO 산화물 반도체 재료는 기존의 비정질 실리콘 반도체 재료 보다 높은 전계 이동도(> $10cm^2/V.s$)를 보이고 있으며, 비정질 실리콘 박막 트랜지스터의 구조에서 산화물 반도체 재료의 대체만으로 효과가 보일 수 있어서 큰 연구가 진행되어져 왔다. 하지만, InGaZnO 산화물 박막 트랜지스터에 대한 소자를 AMOLED에 적용할 때, 기존의 LTPS (low temperature poly-slicon)에서는 발견되지 않았던 소자의 전계신뢰성과 이동도 한계가 문제로 제기되었다. 또한, Indium이라는 희소원소의 사용은 향후 공정 단가와 희소 물질에 대한 위협등에 의하여 새로운 산화물 반도체 재료에 대한 요구와 관심이 발생하고 있다. 본 발표에서는 기존의 산화물 반도체 재료에 대한 차세대 디스플레이인 AMOLED와 유연 디스플레이에 대한 응용 가능성을 발표할 예정이다. 또한 산화물 반도체 재료의 신뢰성 문제에 대한 해결방법으로 신규 산화물 반도체 재료에 대한 연구 방향과 indium-free 계열을 이용한 저원가 산화물 반도체 연구에 대하여 소개할 예정이다. 앞으로 산화물 반도체 재료에 대한 연구와 응용은 기존의 실리콘 반도체 틀을 벗어난 새로운 응용분야를 열어줄 수 있을 것으로 기대하고 있으며, 그 기대에 대한 몇가지 예를 통하여 재료와 소자의 응용 가능성을 논의할 예정이다.

  • PDF

Research of Characterization of Covalently Cross-linked SPEEK/Cs-Substituted MoPA/Ceria 1wt% Composite Membrane for Water Electrolysis (Cs 치환에 따른 수전해용 공유가교 SPEEK/Cs(n)-MoPA/Ceria 1%(n = 1~3) 복합막의 특성 연구)

  • Park, Daeyoung;Hwang, Sungha;Oh, Seunghee;Yoon, Daejin;Kang, Ansoo;Moon, Sangbong;Chung, Janghoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • Ceria ($CeO_2$) was used to scavenge free radicals which attack the membrane in the polymer electrolyte membrane water electrolysis (PEMWE) circumstance and to increase the duration of the membrane. In order to improve the electrochemical, mechanical and electrocatalytic characteristics, engineering plastic of the sulfonated polyether ether ketone (SPEEK) as polymer matrix was prepared in the sulfonation reaction of polyether ether ketone (PEEK) and the organic-inorganic blended composite membranes were prepared by sol-gel casting method with loading the highly dispersed ceria and cesium-substituted phophomolybdic acid(Cs-MoPA) with cross-linking agent contents of 0.01mL. In conclusion, CL-SPEEK/$Cs_{(2.5)}$-MoPA/ceria(1%) membrane showed the optimum results such as 0.1095S/cm of proton conductivity at $80^{\circ}C$, 2.906meq./g-dry-membrane of ion exchange capacity and mechanical characteristics, and 49.73MPa of tensile strength which were better than Nafion 117 membrane.

The Preparation and Characteristics of Covalently Cross-Linked SPEEK/Cs-TPA/Ceria Composite Membranes for Water Electrolysis (수전해용 공유가교 SPEEK/Cs-TPA/Ceria 복합막의 제조 및 특성 연구)

  • Song, Minah;Ha, Sungin;Park, Deayong;Ryu, Cheolhwi;Moon, Sangbong;Kang, Ansoo;Chung, Janghoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.437-447
    • /
    • 2012
  • Ceria ($CeO_2$) was used to scavenge free radicals which attack the membrane in the polymer electrolyte membrane water electrolysis (PEMWE) circumstance and to increase the duration of the membrane. In order to improve the electrochemical, mechanical and electrocatalytic characteristics, engineering plastic of the sulfonated polyether ether ketone (SPEEK) as polymer matrix was prepared in the sulfonation reaction of polyether ether ketone (PEEK) and the organic-inorganic blended composite membranes were prepared by sol-gel casting method with loading the highly dispersed ceria and cesium-substituted tungstophosphoric acid (Cs-TPA) with cross-linking agent contents of 0.01 mL. In conclusion, CL-SPEEK/Cs-TPA/ceria (1%) membrane showed the optimum results such as 0.130 S/cm of proton conductivity at $80^{\circ}C$, 2.324 meq./g-dry-membrane of ion exchange capacity and mechanical characteristics, and 65.03 MPa of tensile strength which were better than Nafion 117 membrane.

Effect of Zn content on Shear Strength of Sn-0.7Cu-xZn and OSP surface finished Joint with High Speed Shear Test (Sn-0.7Cu-xZn와 OSP 표면처리 된 기판의 솔더접합부의 고속 전단강도에 미치는 Zn의 영향)

  • Choi, Ji-Na;Bang, Jae-Oh;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.1
    • /
    • pp.45-50
    • /
    • 2017
  • We investigated effect of Zn content on shear strengh of Sn-0.7Cu-xZn and OSP surface finished solder joints. Five pastes of Sn-0.7Cu-xZn (x=0, 0.5, 1.0, 1.5, 2.0 wt.%) solders were fabricated by mixing of solder powder and flux using planatary mixer. $180{\mu}m$ diameter solder balls were formed on OSP surface finished Cu electrodes by screen print method, and the reflow process was performed. The shear strength was evaluated with two high shear speeds; 0.01 and 0.1 m/s. The thickness of the intermetallic compound(IMC) layer was decreased with increasing Zn content in Sn-0.7Cu-xZn solder. The highest shear strength was 3.47 N at the Zn content of 0.5 wt.%. As a whole, the shear strength at condition of 0.1 m/s was higher than that of 0.01 m/s because of impact stress. Fracture energies were calculated by F-x (Force-displacement) curve during high speed shear test and the tendency of fracture energy and that of shear strength were good agreement each other. Fracture took place within solder matrix at lower Zn content, and fracture occured near the interface of OSP surface finished Cu electrode and solder at higher Zn content.

Analytical Method Development and Monitoring of Residual Solvents in Dietary Supplements (건강기능식품 중 잔류용매 분석법 개발 및 모니터링)

  • Lee, Hwa-Mi;Shin, Ji-Eun;Jang, Young-Mi;Kim, Hee-Yun;Kim, Mee-Hye
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.4
    • /
    • pp.390-397
    • /
    • 2010
  • Residual solvents in foods are defined as organic volatile chemicals used or produced in manufacturing of extracts or additives, or functional foods. The solvents are not completely eliminated by practical manufacturing techniques and they also may become contaminated by solvents from packing, transportation or storage in warehouses. Because residual solvents have no nutritional value but may be hazardous to human health, there is a need to remove them from the final products or reduce their amounts to below acceptable levels. The purpose of this study was to develop and evaluate an analytical method for the screening of residual solvents in health functional foods. Furthermore, the aim of this study was to constitute a reasonable management system based on the current state of the market and case studies of foreign countries. Eleven volatile solvents such as MeOH, EtOH, trichloroethylene and hexane were separated depending on their column properties, temp. and time using Gas Chromatography (GC). After determining the GC conditions, a sample preparation method using HSS (Head Space Sampling) was developed. From the results, a method for analyzing residual solvents in health functional foods was developed considering matrix effect and interference from the sample obtained from the solution of solvents-free health functional foods spiked with 11 standards solutions. Validation test using the developed GC/HSS/MS (Mass Spectrometry) method was followed by tests for precision, accuracy, recovery, linearity and adequate sensitivity. Finally, examination of 104 samples grouped in suits was performed by the developed HSS/GC/MS for screening the solvents. The 11 solvents were isolated from health functional foods based on vapor pressure difference, and followed by separation within 15 minutes in a single run. The limt of detection (LOD), limit of quantification (LOQ), recovery and coefficient of variation (C.V.) of these compounds determined by the HSS/GC/MS were found to be 0.1 pg/mL, 0.1-125 pg/g, 51.0-104.6%, and less than 15%, respectively. Using the developed HSS/GC/MS method, residual solvent from 16 out of 104 health functional products were detected as a EtOH. This method therefore seems t o be a valuable extension ofanalytical method for the identification of residual solvents in health functional food.