• Title/Summary/Keyword: Organic light-emitting diodes

Search Result 749, Processing Time 0.035 seconds

Enhancement in the light extraction efficiency of 405 nm light-emitting diodes by adoption of a Ti-Al reflection layer (Ti-Al 반사막을 이용한 405 nm LED의 광추출 효율 향상)

  • Kim, C.Y.;Kwon, S.R.;Lee, D.H.;Noh, S.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.3
    • /
    • pp.211-214
    • /
    • 2008
  • GaN-based light-emitting diodes (LEDs) of a 405 nm wavelength have been fabricated on a sapphire substrate by metal organic chemical vapor deposition (MOCVD). In order to reflect the photons, which are generated in the InGaN active region and emitted to the backside, to the front surface, a reflection layer was deposited onto the back of the substrate. Aluminum was used as the reflection layer and Al was deposited on the sample followed by Ti evaporation for firm adhesion of the reflection layer to the substrate. The light extraction efficiency was enhanced 52 % by adoption of the Ti-Al reflection layer.

Effect of Thermal Annealing on Nanoscale Thickness and Roughness Control of Gravure Printed Organic Light Emitting for OLED with PVK and $Ir(ppy)_3$

  • Lee, Hye-Mi;Kim, A-Ran;Kim, Dae-Kyoung;Cho, Sung-Min;Chae, Hee-Yeop
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1511-1514
    • /
    • 2009
  • Organic light emitting layer in OLED device was formed by gravure printing process in this work. Organic surface coated by gravure printing typically showed relatively bad uniformity. Thickness and roughness control was characterized by applying various mixed solvents in this work. Poly (N-vinyl carbazole) (PVK) and fact-tris(2-phenylpyridine)iridium($Ir(ppy)_3$) are host dopant system materials. PVK was used as a host and Ir(ppy)3 as green-emitting dopant. To luminance efficiency of the plasma treatment on etched ITO glass and then PEDOT:PSS spin coated. The device layer structure of OLED devices is as follow Glass/ITO/PEDOT:PSS/PVK+Ir(ppy)3-Active layer /LiF/Al. It was printed by gravure printing technology for polymer light emitting diode (PLED). To control the thickness multi-printing technique was applied. As the number of the printing was increased the thickness enhancement was increased. To control the roughness of organic layer film, thermal annealing process was applied. The annealing temperature was varied from room temperature, $40^{\circ}C$, $80^{\circ}C$, to $120^{\circ}C$.

  • PDF

An Exploratory research on patent trends and technological value of Organic Light-Emitting Diodes display technology (Organic Light-Emitting Diodes 디스플레이 기술의 특허 동향과 기술적 가치에 관한 탐색적 연구)

  • Kim, Mingu;Kim, Yongwoo;Jung, Taehyun;Kim, Youngmin
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.135-155
    • /
    • 2022
  • This study analyzes patent trends by deriving sub-technical fields of Organic Light-Emitting Diodes (OLEDs) industry, and analyzing technology value, originality, and diversity for each sub-technical field. To collect patent data, a set of international patent classification(IPC) codes related to OLED technology was defined, and OLED-related patents applied from 2005 to 2017 were collected using a set of IPC codes. Then, a large number of collected patent documents were classified into 12 major technologies using the Latent Dirichlet Allocation(LDA) topic model and trends for each technology were investigated. Patents related to touch sensor, module, image processing, and circuit driving showed an increasing trend, but virtual reality and user interface recently decreased, and thin film transistor, fingerprint recognition, and optical film showed a continuous trend. To compare the technological value, the number of forward citations, originality, and diversity of patents included in each technology group were investigated. From the results, image processing, user interface(UI) and user experience(UX), module, and adhesive technology with high number of forward citations, originality and diversity showed relatively high technological value. The results provide useful information in the process of establishing a company's technology strategy.

4.1' Flexible Organic Light Emitting Diodes Driven by Organic Thin-Film Transistors

  • Hu, Tarng-Shiang;Wang, Yi-Kai;Lin, Tsung-Hsien;Yan, Jing-Yi;Lee, Tzu-Wei;Yu, Chien-Hsien;Wen, Jiing-Fa;Kao, Chi-Jen;Chen, Liang-Hsiang;Shen, Yu-Yuan;Yeh, Shu-Tang;Tseng, Mei-Rurng;Wu, Po-Sheng;Ho, Jia-Chong;Lee, Cheng-Chung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.314-316
    • /
    • 2006
  • In this paper, the plastic organic thin-film transistors (OTFTs) with $32{\ast}32$ array are presented. Flexible organic light emitting diodes (OLEDs) operated by OTFTs are fabricated with a novel lamination method and the results are also presented. OTFT pixels defined by photolithography, and pentacene deposited by thermal evaporation. Fabrication method and the performances of green PHOLEDs with high efficiency, stability, and electrical performance are discussed.

  • PDF

Effect of $HfO_X$ treatment on ITO surface of organic light emitting diodes using Impedance spectroscopy analysis

  • Cho, Jae-Hyun;Park, Hyung-Jun;Han, Kyu-Min;Sohn, Sun-Young;Jung, Dong-Geun;Yi, Jun-Sin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.506-508
    • /
    • 2008
  • In this work, we used impedance spectroscopy analysis to determine the effect of the $HfO_X$ treatment on the surface of ITO and to model the equivalent circuit for OLEDs. Devices with an ITO/Organic material/Al structure can be modeled as resistances and capacitances arranged in parallel or in series. The number of elements depends on the composition of the structure, essentially the number of layers, and the contacts.

  • PDF

Study of Plasma Process Induced Damages on Metal Oxides as Buffer Layer for Inverted Top Emission Organic Light Emitting Diodes

  • Kim, Joo-Hyung;Lee, You-Jong;Jang, Jin-Nyoung;Song, Byoung-Chul;Hong, Mun-Pyo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.543-544
    • /
    • 2008
  • In the fabrication of inverted top emission organic light emitting diodes (ITOLEDs), the organic layers are damaged by high-energy plasma sputtering process for transparent top anode. In this study, the plasma process induced damages on metal oxide hole injection layers (HILs) including $WO_3$, $MoO_3$, and $V_2O_5$ as buffer layer are examined. With the result of IV characteristic of hole-only devices, we propose that $MoO_3$ and $V_2O_5$ are stable materials against plasma sputtering process.

  • PDF

The effect of oxygen doping on organic light emitting diodes by oxygen plasma treatment

  • Hong, Ki-Hyon;Kim, Ki-Soo;Kim, Sung-Jun;Lee, Jong-Lam;Choi, Ho-Won;Tak, Yoon-Heung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.485-487
    • /
    • 2008
  • By the oxygen plasma exposure to the organic light-emitting diodes, the turn-on voltage decreased from 10.5 to 7 V and luminance increased from 470 to $852\;cd/m^2$. Synchrotron radiation photoelectron spectroscopy results showed that during oxygen plasma exposure, oxygen ions were diffused into organic layer and induced p-type doping effect.

  • PDF

Research Trends of Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes (OLED용 지연형광 소재의 연구 동향)

  • Lee, Ju Young
    • Ceramist
    • /
    • v.22 no.3
    • /
    • pp.218-229
    • /
    • 2019
  • The development of highly efficient thermally activated delayed fluorescence (TADF) materials is an active area of recent research in organic light emitting diodes (OLEDs) since the first report by Chihaya Adachi in 2011. Traditional fluorescent materials can harvest only singlet excitons, leading to the theoretically highest external quantum efficiency (EQE) of 5% with considering about 20% light out-coupling efficiency in the device. On the other hand, TADF materials can harvest both singlet and triplet excitons through reverse intersystem crossing (RISC) from triplet to singlet excited states. It could provide 100% internal quantum efficiencies (IQE), resulting in comparable high EQE to traditional rare-metal complexes (phosphorescent materials). Thanks to a lot of efforts in this field, many highly efficient TADF materials have been developed. This review focused on recent molecular design concept and optoelectronic properties of TADF materials for high efficiency and long lifetime OLED application.