• Title/Summary/Keyword: Organic form and structure

Search Result 163, Processing Time 0.036 seconds

Glutathione Conjugates of 2- or 6-Substituted 5,8-Dimethoxy-1,4-Naphthoquinone Derivatives : Formation and Structure

  • Zheng, Xiang-Guo;Kang, Jong-Seong;Kim, Yong;You, Young-Jae;Jin, Guang-Zhu;Ahn, Byung-Zun
    • Archives of Pharmacal Research
    • /
    • v.22 no.4
    • /
    • pp.384-390
    • /
    • 1999
  • Thirty-four glutathione conjugates of 5,8-dimethoxy-1,4-naphthoquinones (DMNQ) were synthesized and their structure was determined. The yield of GSH conjugate was dependent on size of alkyl group; the longer the size of alkyl group was, the lower was the yield. It was also found that the length of alkyl side chain influenced the chemical shift of quinonoid protons; the quinonoid protons of 2-glutathionyl DMNQ derivatives with R=H to propyl, 6.51-6.59 ppm vs. other ones with R=butyl to heptyl, 6.64-6.68 ppm. this was explained to be due to a folding effect of longer alkyl group. Glutathione (GSH) reacted with DMNQ derivative first to form a 1,4-adduct (2- or 3-glutathionyl-1,4-dihydroxy-5,8-dimethoxynaphthalenes) and then the adduct was autooxidized to 2- or 3-glutathionyl-DMNQ derivatives. Moreover, GSH reduced DMNQ derivatives to their hydrogenated products. It was suggested that such an organic reaction might play an important role for a study of metabolism or toxicity of DMNQ derivative sin the living cells.

  • PDF

Gel Polymer Electrolytes Derived from a Polysilsesquioxane Crosslinker for Lithium-Sulfur Batteries (리튬-황 전지용 폴리실세스키옥산 고분자 가교제로 제조된 겔 고분자 전해질의 전기화학적 특성)

  • Kim, Eunji;Lee, Albert S.;Lee, Jin Hong
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.467-471
    • /
    • 2021
  • A ladder-like polysilsesquioxane (LPMA64) functionalized with a crosslinkable group was synthesized and used for the preparation of organic-inorganic hybrid gel polymer electrolytes through a thermal crosslinking process of the liquid electrolytes. A small weight percent of LPMA64 polymer crosslinker (5 wt%) was able to form a well-developed network structure, resulting in good dimensional stability with high ionic conductivity. The lithium-sulfur batteries fabricated with organic-inorganic hybrid gel polymer electrolytes exhibited stable C-rate and cycling performance with excellent Coulombic efficiency due to the alleviated lithium polysulfide shuttling effect during prolonged cycling. The result demonstrates that the organic-inorganic hybrid gel polymer electrolytes could be a promising candidate electrolyte for application in lithium-sulfur batteries.

A Study on the Characteristics of 3D Printing Jewelry Design Utilizing with Fractal Geometry (프랙탈 기하학을 적용한 프린팅 주얼리 디자인 3D 특성)

  • Choi, Kyunghee
    • Journal of Fashion Business
    • /
    • v.21 no.5
    • /
    • pp.136-150
    • /
    • 2017
  • 3D printing has grown tremendously as the most noteworthy new technology in the manufacturing industries. In addition, the rapid development of computer science technology with 3D printing has created a new paradigm called Fractal Geometry, or a new form of digital art. This study explores the formative characteristics of 3D printing jewelry based on presentation of fractal geometry by classification of 3D printing jewelry's morphological types that except for producible shape with traditional mold manufacturing methods. The results of the study are as follows. The morphological characteristics of 3D printed jewelry are divided into their constitutive shapes by the repetition of the unit. The organic shape determined by superposition or overlapping, the systematic shape by distortion caused by distortion, and the variation in scaling by scaling. The formative characteristics, which are drawn from a study on the shape expression of 3D printed jewelry design using fractal geometry, consist of continuity, geometrical characteristics, and exaggeration. Continuity creates a new and self-assigned new space through a recursive structure through a cyclic structure that is formed along a single directional basis. The geometry of the geometry forms a three-dimensional and constructive structure comprised of the same size and structure of the same sized unit under the mathematical order of the geometry of Fractal's geometry. Exaggeration demonstrates the informal beauty and the maximization of the shape by expanding the scaling or superposition of a unit, by scaling the scale or he distortion of the units.

Embedding Cobalt Into ZIF-67 to Obtain Cobalt-Nanoporous Carbon Composites as Electrode Materials for Lithium ion Battery

  • Zheng, Guoxu;Yin, Jinghua;Guo, Ziqiang;Tian, Shiyi;Yang, Xu
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.458-464
    • /
    • 2021
  • Lithium ion batteries (LIBs) is a kind of rechargeable secondary battery, developed from lithium battery, lithium ions move between the positive and negative electrodes to realize the charging and discharging of external circuits. Zeolitic imidazolate frameworks (ZIFs) are porous crystalline materials in which organic imidazole esters are cross-linked to transition metals to form a framework structure. In this article, ZIF-67 is used as a sacrificial template to prepare nano porous carbon (NPC) coated cobalt nanoparticles. The final product Co/NPC composites with complete structure, regular morphology and uniform size were obtained by this method. The conductive network of cobalt and nitrogen doped carbon can shorten the lithium ion transport path and present high conductivity. In addition, amorphous carbon has more pores that can be fully in contact with the electrolyte during charging and discharging. At the same time, it also reduces the volume expansion during the cycle and slows down the rate of capacity attenuation caused by structure collapse. Co/NPC composites first discharge specific capacity up to 3115 mA h/g, under the current density of 200 mA/g, circular 200 reversible capacity as high as 751.1 mA h/g, and the excellent rate and resistance performance. The experimental results show that the Co/NPC composite material improves the electrical conductivity and electrochemical properties of the electrode. The cobalt based ZIF-67 as the precursor has opened the way for the design of highly performance electrodes for energy storage and electrochemical catalysis.

A New Compound Isolation and Structure Analysis from Phellodendron Amurense Fruit Extract (황벽나무 열매 추출물로부터 신규 화합물의 분리 및 구조분석)

  • Kim, Young-Hee;Choi, Jung Eun;Hong, Jin-Young;Jo, Chang Wook;Lee, Jeung-Min;Kim, Soo Ji
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.4
    • /
    • pp.269-275
    • /
    • 2013
  • Antifungal and insecticidal activity of Korean traditional medicinal plants was carried out to develop natural material for the development of organic cultural heritage conservation. As a result, Phellodendron amurense fruit was finally selected as a candidate of antifungal and insecticidal natural material. An novel active compound was purified from the ethylacetate fraction of Phellodendron amurense fruits using silica gel and Sephadex LH-20 column chromatography and PTLC. The compound was obtained as yellow oil form; UV ${\lambda}_{max}$(MeOH): 260 nm. The chemical structure of novel compound was determined as (4'-ethyl-2'-methylfuranyl)-6-methoxy-7-methylnona-2E,4E,6Z,8E-tetraenoic acid on the basis of various NMR experiments including $^1H$- and $^{13}C$-NMR, HMQC, HMBC and ESI-mass spectrum.

Formative Characteristics of Women's Shoes Design Utilizing 3D Printing Technology (3D 프린팅 기술이 접목된 여성 슈즈 디자인의 조형적 특성)

  • Kim, Young-Sam;Jun, Yuh-Sun;Park, keun-Jung;Kim, Jang-Hyeon
    • Journal of the Korean Society of Costume
    • /
    • v.66 no.8
    • /
    • pp.14-32
    • /
    • 2016
  • This study examines the morphological expression type and formative characteristics of women's shoes designs that integrate 3D printing technology. The results of the study are as follows. First, the morphological expression types of contemporary shoes that integrate 3D printing technology express a structural form created by repetition. Second, it expresses a dynamic form, which combines organic curves that create an external volume. Third, it expresses a surrealistic form centered on an object with the creation of a unique shape that utilizes objects easily experienced in local surroundings. Fourth, it expresses a hybrid form on a partial derivation. Each of the other system's components are fused to create another beauty that develops a new value in a colorful variation on the shape of 3D printing shoes. The first formative characteristic of women's shoes designs that integrate 3D printing technology is continuity. This creates an invisible form of a new space through repetitive unidirectional layers with a gradual expansion of a unitary seamless curves. Second, it is an exaggeration. This exaggeration elicits an enormous aesthetic quality by structuring the outward space in the difference of the volume formed based on the maximization of a specific part and the volume of a line's atypical movement. Third, it is a decoration. It displays the beauty of a decoration that evokes a unique artistic inspiration by partial unification or a practical representation of a specific form. This can also be seen as superimposing a 3D printing figure that has an outstanding shape onto part of the fashion shoes. Fourth, it concerns a geometrical characteristic that formulates a new structure with rationality in combining basic shapes such as circles, triangles and squares with lines, hexagons and interconnected geometrical forms to create a multi-dimensional space for shoes in a systematic and unidirectional pattern.

Evaluation of acetaldehyde removal performance of a hybrid adsorbent consisting of organic and inorganic materials (유무기 융복합 흡착제의 아세트알데하이드 제거 성능 평가)

  • Ahn, Hae Young;Lee, Yoon Kyoung;Song, JiHyeon
    • Journal of odor and indoor environment
    • /
    • v.17 no.4
    • /
    • pp.372-380
    • /
    • 2018
  • To abate the problem of odor from restaurants, a hybrid adsorbent consisting of organic and inorganic materials was developed and evaluated using acetaldehyde as a model compound was deveioped and evaluated. Powders of activated carbon, bentonite, and calcium hydroxide were mixed and calcinated to form adsorbent structure. The surface area of the hybrid adsorbent was smaller than that of high-quality activated carbon, but its microscopic image showed that contours and pores were developed on its surface. To determine its adsorption capacity, both batch isotherm and continuous flow column experiments were performed, and these results were compared with those using commercially available activated carbon. The isotherm tests showed that the hybrid adsorbent had a capacity 40 times higher than that of the activated carbon. In addition, the column experiments revealed that breakthrough time of the hybrid adsorbent was 2.5 times longer than that of the activated carbon. These experimental results were fitted to numerical simulations by using a homogeneous surface diffusion model (HSDM); the model estimated that the hybrid adsorbent might be able to remove acetaldehyde at a concentration of 40 ppm for a 5-month period. Since various odor compounds are commonly emitted as a mixture when meat is barbecued, it is necessary to conduct a series of experiments and HSDM simulations under various conditions to obtain design parameters for a full-scale device using the hybrid adsorbent.

Electrically Stable Transparent Complementary Inverter with Organic-inorganic Nano-hybrid Dielectrics

  • Oh, Min-Suk;Lee, Ki-Moon;Lee, Kwang-H.;Cha, Sung-Hoon;Lee, Byoung-H.;Sung, Myung-M.;Im, Seong-Il
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.620-621
    • /
    • 2008
  • Transparent electronics has been one of the key terminologies forecasting the ubiquitous technology era. Several researchers have thus extensively developed transparent oxide-based thin-film transistors (TFTs) on glass and plastic substrates although in general high voltage operating devices have been mainly studied considering transparent display drivers. However, low voltage operating oxide TFTs with transparent electrodes are very necessary if we are aiming at logic circuit applications, for which transparent complementary or one-type channel inverters are required. The most effective and low power consuming inverter should be a form of complementary p-channel and n-channel transistors but real application of those complementary TFT inverters also requires electrical- and even photo-stabilities. Since p-type oxide TFTs have not been developed yet, we previously adopted organic pentacene TFTs for the p-channel while ZnO TFTs were chosen for n-channel on sputter-deposited $AlO_x$ film. As a result, decent inverting behavior was achieved but some electrical gate instability was unavoidable at the ZnO/$AlO_x$ channel interface. Here, considering such gate instability issues we have designed a unique transparent complementary TFT (CTFTs) inverter structure with top n-ZnO channel and bottom p-pentacene channel based on 12 nm-thin nano-oxide/self assembled monolayer laminated dielectric, which has a large dielectric strength comparable to that of thin film amorphous $Al_2O_3$. Our transparent CTFT inverter well operate under 3 V, demonstrating a maximum voltage gain of ~20, good electrical and even photoelectric stabilities. The device transmittance was over 60 % and this type of transparent inverter has never been reported, to the best of our limited knowledge.

  • PDF

Study of Energy Level Alignment at the Interface of P3HT and PCBM Bilayer Deposited by Electrospray Vacuum Deposition

  • Kim, Ji-Hoon;Hong, Jong-Am;Seo, Jae-Won;Kwon, Dae-Gyoen;Park, Yong-Sup
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.134-134
    • /
    • 2012
  • We investigated the interface of poly (3-hexylthiophene) (P3HT) and C61-butyric acid methylester (PCBM) by using photoelectron spectroscopy (PES). These are the most widely used materials for bulk heterojunction (BHJ) organic solar cells due to their high efficiency. Study of the BHJ interfaces is difficult because the organic films are typically prepared by spin coating in ambient conditions. This is incompatible with the interface electronic structure probes such as PES, which requires ultrahigh vacuum conditions. Study of interface requires gradual deposition of thin films that is also incompatible with the spin coating process. In this work, we used electrospray vacuum deposition (EVD) technique to deposit P3HT and PCBM in high vacuum conditions. EVD allows us to form polymer thin films onto ITO substrate in a step-wise manner directly from solutions and to use PES without exposing the sample to the ambient condition. Although the morphology of the EVD deposited P3HT films observed by optical and atomic force microscopes is quite different from that of the spin coated ones, the valence region spectra were similar. PCBM was deposited on the P3HT film in a similar manner and the energy level alignment between these two materials was studied. We discuss the relation between Voc of P3HT:PCBM solar cell and HOMO-LUMO energy offset obtained in this study.

  • PDF

William Blake and the Network of Knowledge: Centering on the Communication of Poetry and Science (윌리엄 블레이크와 지식의 네트워크 -시와 과학의 소통을 중심으로)

  • Lee, Sungbum
    • Journal of English Language & Literature
    • /
    • v.58 no.4
    • /
    • pp.723-752
    • /
    • 2012
  • Although his mythic poetry deals with the fall and resurrection of Albion as the origin of humankind, William Blake (1757-1827) simultaneously links it to the professionalization and unification of disciplinary knowledge itself. He particularly takes a great interest in the cross-referential relation of poetry to science. He argues for the communication of poetry and science on equal footing with each other without the former's prioritization over the latter, or vice versa. In his works Vala, or The Four Zoas (1797-1807) and Jerusalem: The Emanation of the Giant Albion (1804-1820), on which I focus in this essay, Blake's primary problematic is to display strong conflicts among different systems of knowledge. I approach this issue in light of the ideological clash of Newtonian thought, Romantic thought, and postmodern thought. In his poetry, Blake thematizes the very clashes of these different thought patterns. From the standpoint of Romantic thought, first of all, Blake problematizes Newtonian Enlightenment. He criticizes abstract universalization both in poetry and science, which Urizen, one of four Zoas, propagates. Protesting against Urizen's Newtonism, Los values "living form." Thus, Blake demonstrates, through this figure, that poetic imagination and scientific organicism are discursively communicative. Blake, however, also questions the network of Romantic science and Romantic poetry so as to suggest what current critics would call postmodern thought. Blakean postmodernism pursues the self-similarity of organic structure in science and poetry. Precisely, Blake sees polypus as a proliferation of organic body; he arranges four Zoas' self-repetitive stories in a non-linear way. Blake aspires for the conflicting coexistence of different thought patterns.