• Title/Summary/Keyword: Organic degradation

Search Result 924, Processing Time 0.03 seconds

Biodegradation of Endocrine-disrupting Phenolic Compounds Using Laccase Followed by Activated Sludge Treatment

  • Nakamura, Yoshitoshi;Mtui, Godliving
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.5
    • /
    • pp.294-298
    • /
    • 2003
  • Endocrine-disrupting phenolic compounds in the water were degraded by laccase from Trametes sp. followed by activated sludge treatment. The effect of temperature on the degradation of phenolic compounds and the production of organic compounds were investigated using endocrine-disrupting chemicals such as bisphenol A, 2.4-dichlorophenol, and diethyl phthalate. Bisphenol A and 2.4-dichlorophenol disappeared completely after the laccase treatment, but no disappearance of diethyl phthalate was observed. The Michaelis-Menten type equation was proposed to represent the degradation rate of bisphenol A by the lacasse under various temperatures. After the laccase treatment of endocrine-disrupting chemicals, the activated sludge treatment was attempted and it could convert about 85 and 75% of organic compounds produced from bisphenol A and 2.4-dichlorophenol into H$_2$O and CO$_2$, respectively.

흡.탈수 반복 환경에 있어서 유기도막의 방식성 평가

  • Park, Jin-Hwan;Lee, Geun-Dae;Jeon, Ho-Hwan
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.262-268
    • /
    • 2003
  • Organic coatings are widely used to control the corrosion of steel structure. The water in coatings may cause swelling or solvation of coatings, leading to the degradation of coatings. In addition, water affects the permeation of oxygen and other corrosive agents, and consequently the presence of such substances at coating-metal interface promotes corrosion of metal substrate. In this study, the anticorrosive properties of 4 types of coating, such as epoxy-epoxy, epoxy-urethane, urethane-epoxy, urethane-urethane, were evaluated. The evaluation tests were carried out under cyclic water-absorption/desorption conditions, consisting of alternative exposure to diluted 0.001M-LiCl($a_{1120}{\fallingdotseq}1$) and concentrated l0M-LiCl($a_{1120}{\fallingdotseq}0.05$). The anticorrosive performances of coatings were found to decrease in the order of urethane-urethane> urethane-epoxy> epoxy-epoxy coating.

  • PDF

Biodegradable Inorganic-Organic Composite Artificial Bone Substitute

  • Suh, Hwal;Lee, Jong-Eun;Ahn, Sue-Jin;Lee, Choon-Ki
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.1
    • /
    • pp.57-60
    • /
    • 1995
  • To develop an artificial bone substitute that is gradually degraded and replaced by the regenerated natural bone, the authors designed and produced a composite that is consisted of calcium phosphate and collagen. Human umbilical cord origin pepsin treated type I atelocollagen was used as the structural matrix, by which sintered or non-sintered carbonate apatite was encapsulated to form an inorganic-organic composite. With cross linking atelocollagen by UV ray irradiation, the resistance to both compressive and tensile strength was increased. Collagen degradation by the collagenase induced collagenolysis was also decreased.

  • PDF

A Study on Microbial Degradation for Removal of Toluene Vapour by Biofilter (Bio 필터를 이용한 Toluene 제거에서 미생물분해에 관한 연구)

  • 하상안;강신묵
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.1
    • /
    • pp.24-30
    • /
    • 1999
  • A biological filter for treatment of toluene among volatile organic compounds was studied. The investigation was conducted using specially built stainless steel columns packed with granular activated carbon and cold for removal of toluene. The G.A. and mold as filter material was also coated with Pseudomonas putida microorganisms.The biofilter unit was operated in the condition of moisture content vairation at gas loading rate of 12.5 l/min. Gaseous toluene taken from tedlar bag was analyzed by the use of G.C equipped with F.I.d detector. The removal efficiency of gaseous toluene was 95% at average inlet concentration of 950 ppm during bio-degradation operating condition. Effective removal efficiency was obtained with moisture content 27.5% at activated carbon and 32% at mold in this study. The effective operating condition were obtained with pH 6-8, temperature 28-42℃ for microbial degradation at gas loading rate of 12.5 l/min in packed material.

  • PDF

Photocatalytic Degradation of 2,4,6-Trinitrotoluene in Wastewater Using a Thin-Film TiO2 Reactor

  • Shin, Gi-Bum;Kim, Yeong-Kwan
    • Environmental Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.28-32
    • /
    • 2008
  • The photocatalytic treatment of water contaminated with 2,4,6-trinitrotoluene (TNT) was explored in bench-scale experiments in batch mode using a Pyrex tube coated with a thin film of $TiO_2$ located inside a photoreactor. The reactor was aerated by purging it with compressed air before initiating the photocatalytic reaction. The rate of TNT degradation approximated first-order kinetics. The reaction rate constant decreased as the TNT concentration increased from 25 to 100 mg/L, while the first-order kinetics could be modeled using a Langmuir adsorption isotherm. The addition of the organic reductants methanol and EDTA significantly enhanced the rate of TNT degradation, with optimum results in the presence of 20% methanol by volume. EDTA increased the rate of TNT removal by enhancing the role of the reductants.

Aeration Factor Used To Design The Container Type of Biopile Systems for Small-Scale Petroleum-Contaminated Soil Projects

  • Jung, Hyun-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.316-319
    • /
    • 2011
  • Biopiles which offer the potential for cost-effective treatment of contaminated soils are above-ground, engineered systems that use oxygen to stimulate the growth and reproduction of aerobic bacteria for degradation of the petroleum constituents adsorbed to soil in excavated soils. This technology involves heaping contaminated soils into piles and stimulating aerobic microbial activity within the soils through the aeration and/or addition of minerals, nutrients, and moisture. Inside the biopile, microbially mediated reactions by blowing or extracting air through the pipes can enhance degradation of the organic contaminants. The influence of a aeration system on the biopile performance was investigated. Air pressure made to compare the efficiency of suction in the pipes showed that there were slightly significant difference between the two piles in the total amount of TPH biodegradation. The normalised degradation rate was, however, considerably higher in the aeration system than in the normal system without aeration, suggesting that the vertical venting method may have improved the efficiency of the biological reactions in the pile.

Optimum Conditions of Formaldehyde Degradation by the Bacterium Pseudomonas sp. YK-32 (세균 Pseudomonas sp. YK-32 균주에 의한 Formaldehyde 분해 최적조건)

  • Kim, Young-Mog;Lee, Yun-Kyoung;Kim, Kyoung-Lan;Lee, Eun-Woo;Lee, Myung-Suk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.41 no.2
    • /
    • pp.102-106
    • /
    • 2008
  • Formaldehyde, an indoor volatile organic compound, is considered toxic due to its carcinogenic risk. Recently, we isolated a formaldehyde-degrading bacterium Pseudomonas sp. YK-32. A crude enzyme prepared from YK-32 also degraded formaldehyde, suggesting that YK-32 cells have formaldehyde hydrogenase activity which is one of the important factors in formaldehyde degradation. The formaldehyde hydrogenase activity was increased 1.25 fold by adding 0.1 % glucose and formaldehyde to the culture medium. In addition, treatment with 1 mM EDTA as a permeabilizer promoted the degradation of formaldehyde and increased the enzymatic activity.

A Study on the Effect of Cellulose on Degradation Rate of Carbofuran in Flooded Paddy Soil (Carbofuran의 토양중 분해에 대한 Cellulose의 영향에 관한 연구)

  • Tu, Ock-Ju;Chung, Moon-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.4
    • /
    • pp.97-103
    • /
    • 1997
  • Carbofuran was incubated for four weeks in three differenf types of paddy soil samples at 25$\circ$C. The soil samples prepared in the present study were as follows: control soil, 3% cellulose added soil and 10% cellulose added soil. The degradation rate of carbofuran significantly decreased by the addition of cellulose to soil(p<0.05). The initial pH of soils was 5.0. After incubation for four weeks, the pH of 10% cellulose added soil sample was lower than those of control soil and 3% cellulose added soil. According to increased organic carbon content of the soil, redox potentials of soils decreased. The decreased degradation rate of carbofuran in 10% cellulose added soil was related to the highly negative redox potentials in contrast with the oxidised conditions of control soil and 3% cellulose added soil.

  • PDF

Simple Preparation of Anatase Titanium Dioxide Nanoparticles by Heating Titanium-Organic Frameworks

  • Im, Ji Hyuk;Kang, Eunyoung;Yang, Seung Jae;Park, Hye Jeong;Kim, Jaheon;Park, Chong Rae
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2477-2480
    • /
    • 2014
  • Thermal degradation of titanium-containing metal-organic frameworks (MOFs; MIL-125 and MIL-125-$NH_2$ at $350^{\circ}C$ for 6 h in air produced $TiO_2$ nanoparticles of ca. 10 nm in diameter. Scanning electron and transmission electron microscope analyses indicated that those nanoparticles were aggregated randomly within each crystalline particle of their MOF precursors. The $TiO_2$ nanoparticles prepared from MIL-125-$NH_2$ exhibited higher activity for the degradation of 4-chlorophenol under visible light.

Effects of CO2 partial pressure on the characteristics of organic matter degradation in anaerobic digestion (혐기성소화의 물질분해 특성에 미치는 CO2 분압의 영향)

  • Kim, Young Chur;Eom, Tae kyu;Lee, Mu Kang;Cha, Gi Cheol;Noike, Tatsuya
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.4
    • /
    • pp.111-118
    • /
    • 1996
  • Effects of $CO_2$ partial pressure($pCO_2$) on the characteristics of methane production rate and organic matter degradation in anaerobic digestion were investigated by using anaerobic chemostat type reactors at $35{\pm}1^{\circ}C$, at the HRT of 7days. The $pCO_2$ of the reactors was controlled in the range from 0.1 to 0.8 atm. Since the $pCO_2$ in an uncontrolled condition was about 0.4atm, $N_2$ was added for the reactors controlled of $pCO_2$ of between 0.1 and 0.4atm. At $pCO_2$ of 0.5 atm, the methane production rate was approximately 20% more that in an uncontrolled condition of $pCO_2$. Based on the carbon mass balance, it was concluded that methane production was related to the increment of removal organic carbon and consumption of $CO_2$. At $pCO_2$ of 0.5atm, the methane production by the increment of removal substrates increased 13.6%, on the orther hand, hand, the methane production by the conversion of $CO_2$ to methane increased 6.4%.

  • PDF