• Title/Summary/Keyword: Organic decontamination

Search Result 38, Processing Time 0.025 seconds

Evaluation of dissolution characteristics of magnetite in an inorganic acidic solution for the PHWR system decontamination

  • Ayantika Banerjee ;Wangkyu Choi ;Byung-Seon Choi ;Sangyoon Park;Seon-Byeong Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1892-1900
    • /
    • 2023
  • A protective oxide layer forms on the material surfaces of a Nuclear Power Plant during operation due to high temperature. These oxides can host radionuclides, the activated corrosion products of fission products, resulting in decommissioning workers' exposure. These deposited oxides are iron oxides such as Fe3O4, Fe2O3 and mixed ferrites such as nickel ferrites, chromium ferrites, and cobalt ferrites. Developing a new chemical decontamination technology for domestic CANDU-type reactors is challenging due to variations in oxide compositions from different structural materials in a Pressurized Water Reactor (PWR) system. The Korea Atomic Energy Research Institute (KAERI) has already developed a chemical decontamination process for PWRs called 'HyBRID' (Hydrazine-Based Reductive metal Ion Decontamination) that does not use organic acids or organic chelating agents at all. As the first step to developing a new chemical decontamination technology for the Pressurized Heavy Water Reactor (PHWR) system, we investigated magnetite dissolution behaviors in various HyBRID inorganic acidic solutions to assess their applicability to the PHWR reactor system, which forms a thicker oxide film.

The Effect of Organic Acids in Decontamination Solution on Ion Exchange of Metal Ions (제염용액내 유기산이 금속이온 이온교환에 미치는 영향)

  • Yang, Yeong-Seok;Kang, Young-Ho;Jheong, Gyeong-Rak
    • Applied Chemistry for Engineering
    • /
    • v.4 no.1
    • /
    • pp.171-177
    • /
    • 1993
  • In decontamination process to remove radioactive materials of reactor cooling system, the metal ions dissolved by organic acids in decontamination solution are separated by use of ion exchange resin in the column. However, organic acids in decontamination solution decrease the apparent affinity of the resin to metal ions. In light of this, some experiments were carried out on the Amberlite IRN-77 cation resin with cobalt and iron to gain a better understanding of the complexation effects on the ion exchange process. Experimental results showed that EDTA among organic acids used as chemical decontaminants predominantly caused reduction of ion exchange capacity of cobaltous ion to resin since this reagent formed the complex with the cobaltous ion stronger than that with the ferrous ion. In contrast, the effects of oxalic acid and citric acid were found to be negligible. And, single and two-component nonlinear equilibrium relationships of the metal ions were established using experimental data.

  • PDF

Development of New Processes for the Decommissioning Decontamination and for Treatment and Disposal of the Secondary Low- and Intermediate-Level Radioactive Waste

  • John, Jan;Bartl, Pavel;Cubova, Katerina;Nemec, Mojmir;Semelova, Miroslava;Sebesta, Ferdinand;Sobova, Tereza;Sul'akova, Jana;Vetesnik, Ales;Vopalka, Dusan
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.1
    • /
    • pp.9-27
    • /
    • 2021
  • As an example of research activities in decontamination for decommissioning, new data are presented on the options for corrosion layer dissolution during the decommissioning decontamination, or persulfate regeneration for decontamination solutions re-use. For the management of spent decontamination solutions, new method based on solvent extraction of radionuclides into ionic liquid followed by electrodeposition of the radionuclides has been developed. Fields of applications of composite inorganic-organic absorbers or solid extractants with polyacrylonitrile (PAN) binding matrix for the treatment of liquid radioactive waste are reviewed; a method for americium separation from the boric acid containing NPP evaporator concentrates based on the TODGA-PAN material is discussed in more detail. Performance of a model of radionuclide transport, developed and implemented within the GoldSim programming environment, for the safety studies of the LLW/ILW repository is demonstrated on the specific case of the Richard repository (Czech Republic). Continuation and even broadening of these activities are expected in connection with the approaching end of the lifespan of the first blocks of the Czech NPPs.

Chemical Warfare Agent Simulant Decontamination of Chitosan Treated Cotton Fabric (키토산 처리 면직물의 군사용 화학 작용제 모사체 분해 연구)

  • Kwon, Woong;Han, Minwoo;Jeong, Euigyung
    • Textile Coloration and Finishing
    • /
    • v.32 no.1
    • /
    • pp.51-56
    • /
    • 2020
  • This study aims to pursue the multi-functional textile finishing method to detoxify chemical warfare agent by simply treating the well-known antimicrobial agent, chitosan, to cotton fabric. For this purpose, DFP(diisopropylfluorophosphate) was sele cted as a chemical warfare agent simulant and cotton fabric was treated with 0.5, 1.0, and 2wt% chitosan solution in 1wt% acetic acid. DFP decontamination properties of the chitosan treated cotton fabrics were evaluated and compared with the untreated cotton fabric. The chitosan treated cotton fabrics showed better DFP decontamination than the untreated cotton. Decontamination properties of the chitosan treated cotton fabrics improved with the increased chitosan solution used. Especially, the cotton fabrics treated with 2wt% chitosan solution showed 5 times more DFP decontamina tion than the untreated cotton fabrics. This suggested that the chitosan treated fabric has potential to be used as a material for protective clothing with chemical warfare agent detoxifying and antimicrobial properties.

Electrochemical oxidation of sodium dodecylbenzenesulfonate in Pt anodes with Y2O3 particles

  • Jung-Hoon Choi;Byeonggwan Lee;Ki-Rak Lee;Hyun Woo Kang;Hyeon Jin Eom;Seong-Sik Shin;Ga-Yeong Kim;Geun-Il Park;Hwan-Seo Park
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4441-4448
    • /
    • 2022
  • The electrochemical oxidation process has been widely studied in the field of wastewater treatment for the decomposition of organic materials through oxidation using ·OH generated on the anode. Pt anode electrodes with high durability and long-term operability have a low oxygen evolution potential, making them unsuitable for electrochemical oxidation processes. Therefore, to apply Pt electrodes that are suitable for long-term operation and large-scale processes, it is necessary to develop a new method for improving the decomposition rate of organic materials. This study introduces a method to improve the decomposition rate of organic materials when using a Pt anode electrode in the electrochemical oxidation process for the treatment of organic decontamination liquid waste. Electrochemical decomposition tests were performed using sodium dodecylbenzenesulfonate (SDBS) as a representative organic material and a Pt mesh as the anode electrode. Y2O3 particles were introduced into the electrolytic cell to improve the decomposition rate. The decomposition rate significantly improved from 21% to 99%, and the current efficiency also improved. These results can be applied to the electrochemical oxidation process without additional system modification to enhance the decomposition rate and current efficiency.

The Status and Prospect of Decommissioning Technology Development at KAERI (한국원자력연구원의 해체기술 개발 현황 및 향후 전망)

  • Moon, Jeikwon;Kim, Seonbyung;Choi, Wangkyu;Choi, Byungseon;Chung, Dongyong;Seo, Bumkyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.2
    • /
    • pp.139-165
    • /
    • 2019
  • The current status and prospect of decommissioning technology development at KAERI are reviewed here. Specifically, this review focuses on four key technologies: decontamination, remote dismantling, decommissioning waste treatments, and site remediation. The decontamination technologies described are component decontamination and system decontamination. A cutting method and a remote handling method together with a decommissioning simulation are described as remote dismantling technologies. Although there are various types of radioactive waste generated by decommissioning activities, this review focuses on the major types of waste, such as metal waste, concrete waste, and soil waste together with certain special types, such as high-level and high-salt liquid waste, organic mixed waste, and uranium complex waste, which are known to be difficult to treat. Finally, in a site remediation technology review, a measurement and safety evaluation related to site reuse and a site remediation technique are described.

Detoxification Properties of Surface Aminated Cotton Fabric (아민화 표면 처리된 면직물의 제독 성능 연구)

  • Kim, Changkyu;Kwon, Woong;Jeong, Euigyung
    • Textile Coloration and Finishing
    • /
    • v.32 no.2
    • /
    • pp.73-79
    • /
    • 2020
  • Pursuing the fabric materials for military chemical warfare protective clothing with the improved detoxification properties, this study investigated the simple and effective cotton treatment method using pad-dry-cure process and 3-aminopropyltrimethox ysilane(APTMS) solution for surface amination. Detoxification properties of the untreated and treated cotton fabrics were evaluated via decontamination of chemical warfare agent simulant, DFP(diisopropylfluorophosphate). The surface aminated cotton fabric increased the rate of the hydrolysis of DFP by the factor of 3 and the decontamination ratio reached 88.2% after 24h. Therefore, the surface amination of the cotton fabric with APTMS can be an effective pathway to prepare the material for protective clothing against chemical warfare agents.