• 제목/요약/키워드: Organic decomposition

검색결과 715건 처리시간 0.029초

새만금지역 하구갯벌의 유기물 분해능력 평가 (Estimation of Decomposition Capacity for Organic Matter in Tidal Flat Sediments at Saemankeum Area)

  • 김종구;유선재
    • 한국환경과학회지
    • /
    • 제10권5호
    • /
    • pp.315-321
    • /
    • 2001
  • This study was conducted to estimate the decomposition capacity for organic matter by microbe of tidal flat sediments (Hajae, Dongjin and Mankyung). The decomposition rate constants (K') have been determined by Thomas slope method and compared with the values of each tidal flats. The decomposition rates of organic matter by microbe were initially very slow, but at the end of 12 hours, very sharply increased. The values of decomposition rate constant for Dongjin, Mankyung and Hajae tidal flat sediment were 1.364$day^{-1}$/, 1.080d$day^{-1}$ and 0.735$day^{-1}$, respectively. The decomposition rate constant of Dongjin tidal flat sediment which affected by livestock wastewater was higher than others. The decomposition quantity (mg/g/day) of organic matter by microbe of tidal flat sediments was 0.4mg/g/day for Dongjin, 0.36mg/g/day for Mankyung and 0.36mg/g/day for Hajae. The average of decomposition quantity was 0.37mg/g/day. To calculate purification capacity (kg/ha) of organic matter by microbe, we applied to two assumption ; 1) biological action by microbe is occur within 0.1cm under surface 2) specific gravity of sediment are 2.5g/$\textrm{cm}^2$. The purification capacity of organic matter by microbe of tidal flat sediment was calculated to 9.25kg/ha. The relationships between decomposition rate constant (K') and ignition loss (I. L), chemical oxygen demand by sediment (CO $D_{sed}$), total carbon(TC), silt and clay as index of organic matter were a high positive($R^2$=0.97~1.00).

  • PDF

남강 및 금호강에서 유기탄소 존재형태와 분해속도와의 관계 (The Relationship between the Fractionation Characteristics and Decomposition Rate of Organic Carbon in Nam River and Geumho River)

  • 김호섭;김석규;오승영
    • 한국물환경학회지
    • /
    • 제39권2호
    • /
    • pp.131-141
    • /
    • 2023
  • In this study, the relationship between organic carbon distribution characteristics and decomposition rate classified according to the particle size and biological degradation characteristics in water was investigated for the Nam river and Geumho river. The average concentrations of TOC in the Nam river and Geumho river were 2.7±1.2 mg/L and 5.0±1.2 mg/L, respectively, but the composition ratios for each type of organic carbon were similar. An average value of 80.9% of TOC was present as DOC and 72.8% of DOC consisted of Refractory-DOC (RDOC). In addition, the change in the RDOC composition ratio according to temporal and spatial distribution was the smallest. There was no difference in the decomposition rate of organic carbon except for TOC by the site (p≥0.108, one-way ANOVA), and the decomposition rates of Labile-POC (LPOC) and LDOC were similar at 0.139±0.102 and 0.137±0.149 day-1, respectively (p=0.110, paired t-test). The coefficient of variation (CV) of the decomposition rate of DOC (average 8.1%), which had the smallest composition ratio of organic carbon, was 1.1, showing the largest temporal variation. The TOC, POC, and DOC decomposition rates showed a significant correlation with the ratio of the initial concentration to the concentration after 25 days of decomposition (OC25/OC0) (r2=0.89~0.94, p<0.001), and the decomposition rates of LPOC and LDOC were significantly correlated with the ratio of the initial concentration to the concentration after 5 days of decomposition (LOC5/LOC0) (r2=0.67~0.75). This suggests that it is possible to estimate the decomposition rate through the concentration of each type of organic carbon.

C:N:P stoichiometry of particulate and dissolved organic matter in river waters and changes during decomposition

  • Islam, Mohammad Jahidul;Jang, Changwon;Eum, Jaesung;Jung, Sung-min;Shin, Myoung-Sun;Lee, Yunkyoung;Choi, Youngsoon;Kim, Bomchul
    • Journal of Ecology and Environment
    • /
    • 제43권1호
    • /
    • pp.14-21
    • /
    • 2019
  • Background: Stoichiometry plays an important role in understanding nutrient composition and cycling processes in aquatic ecosystems. Previous studies have considered C:N:P ratios constant for both DOM (dissolved organic matter) and POM (particulate organic matter). In this study, water samples were collected in the six major rivers in Korea and were incubated for 20 days. C:N:P ratios were determined during the time course of the incubations. This allowed us to examine the changes in N and P contents of organic matter during decomposition. Results: POM and DOM showed significant differences in N and P content and the elemental ratios changed during the course of decomposition; DOM showed higher C:N and C:P ratios than POM, and the C:N and C:P ratios increased during decomposition, indicating the preferential mineralization of P over N and N over C. Conclusions: The N and P contents of organic matter in aquatic ecosystem are far from constant and vary significantly during decomposition. More detailed information on the changes in C:N:P ratios will provide improved understanding of decomposition processes and improved modeling of aquatic ecosystems.

Electrochemical oxidation of sodium dodecylbenzenesulfonate in Pt anodes with Y2O3 particles

  • Jung-Hoon Choi;Byeonggwan Lee;Ki-Rak Lee;Hyun Woo Kang;Hyeon Jin Eom;Seong-Sik Shin;Ga-Yeong Kim;Geun-Il Park;Hwan-Seo Park
    • Nuclear Engineering and Technology
    • /
    • 제54권12호
    • /
    • pp.4441-4448
    • /
    • 2022
  • The electrochemical oxidation process has been widely studied in the field of wastewater treatment for the decomposition of organic materials through oxidation using ·OH generated on the anode. Pt anode electrodes with high durability and long-term operability have a low oxygen evolution potential, making them unsuitable for electrochemical oxidation processes. Therefore, to apply Pt electrodes that are suitable for long-term operation and large-scale processes, it is necessary to develop a new method for improving the decomposition rate of organic materials. This study introduces a method to improve the decomposition rate of organic materials when using a Pt anode electrode in the electrochemical oxidation process for the treatment of organic decontamination liquid waste. Electrochemical decomposition tests were performed using sodium dodecylbenzenesulfonate (SDBS) as a representative organic material and a Pt mesh as the anode electrode. Y2O3 particles were introduced into the electrolytic cell to improve the decomposition rate. The decomposition rate significantly improved from 21% to 99%, and the current efficiency also improved. These results can be applied to the electrochemical oxidation process without additional system modification to enhance the decomposition rate and current efficiency.

배양액에서의 유기물분해와 식물군락에서의 낙엽분해에 관한 모델 (Decomposition Models of the Organic Matters in Cultural Media and the Litters in Forest)

  • 이웅상;장남기
    • 아시안잔디학회지
    • /
    • 제9권2호
    • /
    • pp.119-129
    • /
    • 1995
  • Decomposition rates of glucose, starch, spinach leaves and litters in forests are calculated by equation dC dt=-kC(Co-1nC), dC- dt=$-kC^2$, and Olson's negative exponential decay model.dC dt = - kC =-kC(Co - InC) showed a very close fit to decomposition of the organic matters in cultural media by purified microorganisms and dC dt=$-kC^2$ to decomposition of the litters in forests. Key words: Organic matters, Cultural media, Glucose, Starch, Leaves, Litters.

  • PDF

일메나이트 상에서 광화학반응에 의한 유기물의 분해 (Decomposition of Organic Compound by Photo-Chemical Reaction on Ilmenite)

  • 최임규;하백현
    • 태양에너지
    • /
    • 제8권2호
    • /
    • pp.39-45
    • /
    • 1988
  • Photo-decomposition experiments to produce hydrogen from organic compound such as alcohols and organic acids were investigated using the Korean natural ilmenite, which was used as ore itself as well as the calcined in vacuum. The decomposition activities of alcohol on ore (30-60 mesh) which was not calcined did not decrease even if it was repeatedly used. But crushed ore which had newly formed ilmenite surface revealed enhanced activities. The ilmenite powder calcined in vacuum showed 3-8 times higher activies than the ore powder itself and also the decomposition activity of formic acid was much higher than that of alcohols.

  • PDF

금강수계에서 수중 유기탄소의 분포와 분해속도 (The Distribution of Organic Carbon and its Decomposition Rate in the Kum River, Korea)

  • 장창원;김재구;김동환;김범철;박주현
    • 한국물환경학회지
    • /
    • 제24권2호
    • /
    • pp.174-179
    • /
    • 2008
  • The distribution of organic carbon and its decomposition rate were studied in the middle and down stream reaches of the Kum River system, Korea. Water samples were collected from May to June in 2006 at seven mainstream sites and three tributary sites from the river mouth to the Daechung Reservoir outlet. The change of DOC and POC were measured during incubation for the determination of decomposition rate. The reduction of organic carbon during 20 days' incubation was regarded as labile or biodegradable organic carbon (LDOC, LPOC), and the remaining organic carbon was regarded as recalcitrant organic carbon. The mean TOC was $5.17({\pm}1.49)mgC{\cdot}L^{-1}$ in the mainstream sites and $7.09({\pm}1.48)mgC{\cdot}L^{-1}$ in tributary sites, respectively. TOC comprised of 62% DOC and 38% POC. LPOC was approximately 68% of POC, while LDOC was only 24% of DOC. Mean decomposition rate of TOC was about $0.03day^{-1}$. Mean decomposition rates of LPOC ranged from $0.10day^{-1}$, and that of LDOC was approximately $0.08day^{-1}$. The decomposition rate of both LPOC and LDOC did not show significant difference between mainstream and tributary sites. The result of this study can give a guide to the selection of parameters in the calibration processes of water quality models.

플라즈마 프로세스 및 촉매 표면화학반응에 의한 유기화합물 분해효율 향상에 대한 연구 (A Study on the Improvement of Decomposition Efficiency of Organic Substances Using Plasma Process and Catalytic Surface Chemical Reaction)

  • 한상보
    • 전기학회논문지
    • /
    • 제59권5호
    • /
    • pp.932-938
    • /
    • 2010
  • This paper proposed the effective treatment method for organic substances using the barrier discharge plasma process and catalytic chemical reaction followed from ozone decomposition. The decomposition by the plasma process of organic substances such as trichloroethylene, methyl alcohol, acetone, and dichloromethane carried out, and ozone is generated effectively at the same time. By passing through catalysts, ozone easily decomposed and further decomposed organic substances. And, 2-dimensional distribution of ozone using the optical measurement method is performed to identify the catalytic surface chemical reaction. In addition, CO is easily oxidized into $CO_2$ by this chemical reaction, which might be induced oxygen atom radicals formed at the surface of catalyst from ozone decomposition.

Decomposition of Livestock Manure in Soils Cultivated with Chinese Cabbage along an Altitude Gradient

  • Zhang, Yong-Seon;Lee, Gye-Jun;Lee, Jeong-Tae;Sonn, Yeon-Kyu;Yun, Hong-Bae;Kim, Myung-Sook
    • 한국토양비료학회지
    • /
    • 제46권3호
    • /
    • pp.203-208
    • /
    • 2013
  • This study was conducted to investigate decomposition of livestock manure in soils cultivated with Chinese cabbage along an alitude gradient. The experiments were conducted in Kangreung (17 m above sea level), Bongpyeong (430 m above sea level), and Daekwanryeong (800 m above the sea level) in order to assess the decomposition rate and accumulations of livestock manures depending on different altitudes. During chinese cabbage cultivation, the decomposition ratios of organic matter derived form livestock manure expressed as % of the initial organic matter content were 42~48% for Kangreung, 26~29% for Bongpyeong and 10~14% for Daekwanryeong. Changes in air temperature with altitude might be a main factor affecting manure decomposition rates.

전자빔 가속기에 의한 페놀의 분해 I - 페놀의 분해와 생물학적 처리의 가능성 연구 - (Decomposition of Phenol by Electron Beam Accelerator I - Degree of Decomposition of Phenol and Possiblity of Biological Treatment -)

  • 양해영
    • 한국산업융합학회 논문집
    • /
    • 제15권3호
    • /
    • pp.71-77
    • /
    • 2012
  • This study gives the optimal reaction conditions, reaction mechanisms, reaction rates leaded from the oxidation of phenol by electron beam accelerator and ozone used for recent water treatment. It gives the new possibility of water treatment process to effectively manage industrial sewage containing toxic organic compounds and biological refractory materials. The high decomposition of phenol was observed at the low dose rate, but at this low dose rate, the reaction time was lengthened. So we must find out the optimal dose rate to promote high oxidation of reactants. The reason why the TOC value of aqueous solution wasn't decreased at the low dose was that there were a lot of low molecular organic acids as an intermediates such as formic acid or glyoxalic acid. In order to use both electron beam accelerator and biological treatment for high concentration refractory organic compounds, biological treatment is needed when low molecular organic compounds exist abundantly in sewage. In this experiment, the condition of making a lot of organic acids is from 5 kGy into 20 kGy dose. Decomposition rate of phenol by electron beam accelerator was first order reaction up to 300ppm phenol solution on the basic of TOC value and also showed first order reaction by using both air and ozone as an oxidants.