The Distribution of Organic Carbon and its Decomposition Rate in the Kum River, Korea

금강수계에서 수중 유기탄소의 분포와 분해속도

  • Jang, Chang-Won (Department of Environmental Science, Kangwon National University) ;
  • Kim, Jai-Ku (Department of Environmental Science, Kangwon National University) ;
  • Kim, Dong-Hwan (Department of Environmental Science, Kangwon National University) ;
  • Kim, Bomchul (Department of Environmental Science, Kangwon National University) ;
  • Park, Ju-Hyun (National Institute of Environmental Research)
  • Received : 2007.11.12
  • Accepted : 2008.02.21
  • Published : 2008.03.30

Abstract

The distribution of organic carbon and its decomposition rate were studied in the middle and down stream reaches of the Kum River system, Korea. Water samples were collected from May to June in 2006 at seven mainstream sites and three tributary sites from the river mouth to the Daechung Reservoir outlet. The change of DOC and POC were measured during incubation for the determination of decomposition rate. The reduction of organic carbon during 20 days' incubation was regarded as labile or biodegradable organic carbon (LDOC, LPOC), and the remaining organic carbon was regarded as recalcitrant organic carbon. The mean TOC was $5.17({\pm}1.49)mgC{\cdot}L^{-1}$ in the mainstream sites and $7.09({\pm}1.48)mgC{\cdot}L^{-1}$ in tributary sites, respectively. TOC comprised of 62% DOC and 38% POC. LPOC was approximately 68% of POC, while LDOC was only 24% of DOC. Mean decomposition rate of TOC was about $0.03day^{-1}$. Mean decomposition rates of LPOC ranged from $0.10day^{-1}$, and that of LDOC was approximately $0.08day^{-1}$. The decomposition rate of both LPOC and LDOC did not show significant difference between mainstream and tributary sites. The result of this study can give a guide to the selection of parameters in the calibration processes of water quality models.

Keywords

Acknowledgement

Supported by : 국립환경과학원

References

  1. 국립환경과학원(2004). 낙동강수계 수중생태계 수질모델인자 조사 연구보고서II, 환경부
  2. 김범철, 김동섭, 황길순, 최광순, 허우명, 박원규(1996). 부영양한 낙동강수계에서 유기물오염에 대한 조류 1차생산의 기여도. 한국조류학회지, 11(2), pp. 231-237
  3. 김선미, 김규호, 홍일표, 서동일(1997). 금강 본류의 갈수시 수질관리를 위한 하천유지유량 산정. 대한환경공학회지, 19(11), pp. 1347-1360
  4. 김재구, 김범철, 정성민, 장창원, 신명선, 이윤경(2007). 한강수계 농경지역 하천과 산림지역 하천에서 DOM과 POM의 분포 및 안정탄소동위원소 조성비. 한국육수학회지, 40(1), pp 93-102
  5. 서동일, 이종현, 이은형, 고익환(2004). QUAL2E를 이용한 금강 하류의 수질 모델링 및 오차 원인 분석. 대한환경공학회지, 26(8), pp. 933-940
  6. 오정우, 윤재흥(1998). 상수도관로내에서의 THMs 생성특성. 한국물환경학회지, 14, pp. 223-228
  7. 유순주, 김창수, 하성룡, 황종연, 채민희(2005). 금강수계 자연유기물 특성 분석. 한국물환경학회지, 21(1), pp. 125-131
  8. 윤영삼, 유재정, 김문수, 신찬기, 박제철(2005). 낙동강 본류에 대한 용존유기물의 분해속도 연구. 공동추계학술발표회논문집, 대한상하수도학회.한국물환경학회, pp. 455-460
  9. 이용석(1996). 금강 수질변화 예측을 위한 QUAL2E모델의 보정 및 검증에 관한 연구. 환경관리학회지, 2(1), pp. 112-121
  10. 이유희(1998). 소양호 용존유기물의 분포 및 분해특성에 관한 연구. 이학석사학위논문, 강원대학교
  11. 최승봉(1994). BOD 탈산소계수와 온도보정계수의 분포에 관한 연구. 이학석사학위논문, 강원대학교
  12. 최흥식, 이길성(1987). QUALII모형의 금강수계에의 적용. 대한상하수도학회지, 2, pp. 20-33
  13. Agbekodo, K. (1991). Utilisation des Resines Macroporeuses XAD-8 et XAD-4 pour I'extraction st la Caracterisation du Carbone Organique Dissous D'une eau de Barrage. Diplome d'Etudes Approfondies Chimie st Microbiologie de I'Eau, Universite de Poitiers, France
  14. Choi, K. S. (2000). Dynamics of Dissolved Organic Carbon in a Deep Reservoir, Lake Soyang. Ph.D dissertation, Kangwon National University, Korea
  15. Croue, J. P., Korshin, G. V., Leenheer, J. A. and Benjamin, M. M. (1998). Isolation, Fractionation and Characterization of Natural Organic Matter in Drinking Water. AWWARF report
  16. Degens, E. T. (1982). SCOPE/UNEP Transport of Carbon and Minerals in Major World River Part 1. University of Hamburg, German
  17. Grieve, I. C. (1990). Seasonal, hydrological, and land management factors controlling dissolved organic carbon concentrations in the Loch Fleet catchments, southwest Scotland. Hydrol. Processes, 4, pp. 231-239 https://doi.org/10.1002/hyp.3360040304
  18. Haslam, P. L. (1998). BAL standardization and measurement of a cellular components. Eur. Resp. Rev., 8, pp. 1066-1071
  19. Hessen, D. O. and Tranvik, L. J. (eds). (1998). Aquatic humic substances-ecology and biogeochemistry, Springer-Verlag, Berlin
  20. Keskitalo, J. and Eloranta, P. (eds). (1999). Limnology of humic water, Backhuys Publishers, Leiden
  21. Kim, B., Choi, K., Kim, C., Lee, U. H. and Kim, Y. H. (2000). Effect of the summer monsoon on the distribution and loading of organic carbon in a deep reservoir, Lake Soyang, Korea. Water Res., 43(14), pp. 3495-3504
  22. Koenings, J. P. and Hooper, F. F. (1976). In Situ Experiments on the Dissolved and Colloidal State of Iron in an Acid Bog Lake. Limnol. Oceanogr., 21, pp. 684-696 https://doi.org/10.4319/lo.1976.21.5.0684
  23. Krasner, S. W. (1999). Chemistry of Disinfection By-Product Formation, Formation and Control of Disinfection By-Products in Drinking Water. AWWA, Denver, pp. 27-52
  24. Larson, R. A. and Hufnal, Jr. J. M. (1980). Oxidative polymerization of dissolved phenols by soluble and insoluble inorganic species. Limnol. Oceanogr., 25, pp. 505-512 https://doi.org/10.4319/lo.1980.25.3.0505
  25. Malcolm, R. L. and Durum, W. H. (1976). Organic Carbon and Nitrogen Concentrations and Annual Organic Carbon Load of Six Selected Rivers of the United States. USGS Water Supply Paper, pp. 1817-F
  26. Marhaba, T. F. and Van, D. (2000). The variation of mass and disinfection by-product formation potential of dissolved organic matter fractions along a conventional surface water treatment plant. J. Has. Mat., A74, pp. 133-147
  27. Meybeck, M. (1982). Carbon, nitrogen, and phosphorus transports by world river. Amer. J. Sci., 282(4), pp. 401-450 https://doi.org/10.2475/ajs.282.4.401
  28. Meyer, J. L. (1986). Dissolved organic carbon dynamics in two subtropical blackwater rivers. Arch. Hydrobial., 108, pp. 119-134
  29. Moore, T. R. (1987). Patterns of dissolved organic matter in sub-Arctic peatlands. Earth Surf. Processes Landforms, 12, pp. 387-397 https://doi.org/10.1002/esp.3290120405
  30. Ogura, N. (1972). Rate and extent of decomposition of dissolved organic matter in surface seawater. Mar. Biol., 13, pp 89-93 https://doi.org/10.1007/BF00366559
  31. Owen, D. M., Amy, G. L. and Chowdhurry, Z. K. (1993). Characterization of Natural Organic Matter and Its Relationship to Treatability. AWWA, Denver
  32. Reckhow, D. A. and Singer, P. C. (1990). Chlorination of Humic Materials: By-Product Formation and Chemical Interpretations. Environ. Sci. Technol., 24, pp. 1655-1664 https://doi.org/10.1021/es00081a005
  33. Riemann, B. and Sondergaard, M. (1986). Regulations of bacterial secondary production in two eutrophic lakes and in experimental enclosures. J. Plankton Res., 8, pp. 519-536 https://doi.org/10.1093/plankt/8.3.519
  34. Servais, P., Billem, G. and Hascoet, M. C. (1987). Determination of the Biodegradable fraction of dissolved organic matter in waters. Wat. Res., 21(4), pp. 445-450 https://doi.org/10.1016/0043-1354(87)90192-8
  35. Thurman, E. M. (1985). Organic Geochemistry of Natural Water, Dordrecht, The Netherland
  36. Wetzel, R. G. (1984). Detrital dissolved and particulate organic carbon functions in aquatic ecosystems. Bull. Mar. Sci., 35, pp. 503-509
  37. Wetzel, R. G. (2001). Limnology: Lake and River Ecosystems. Academic press, San Diego, USA
  38. Wetzel, R. G. and Rich, P. H. (1973). Carbon in fresh water systems. In G. M., pp. 241-263