• Title/Summary/Keyword: Organic chemistry

Search Result 2,799, Processing Time 0.031 seconds

Increase in Discharge Capacity of Li Battery Assembled with Electrochemically Prepared V2O5/polypyrrole-composite-film Cathode

  • Kim, You-Na;Kim, Joo-Seong;Thieu, Minh-Triet;Dinh, Hung-Cuong;Yeo, In-Hyeong;Cho, Won-Il;Mho, Sun-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3109-3114
    • /
    • 2010
  • Flexible composite films of $V_2O_5$ and conductive polypyrrole ($V_2O_5$/PPy) were grown by facile electrochemical polymerization, wherein an anodization potential was applied to the substrate electrode in an electrolyte solution containing pyrrole monomer and dispersed $V_2O_5$ particles. The coating of polypyrrole (PPy) on the surface of $V_2O_5$ particles was induced by the oxidative catalytic action of $V_2O_5$ during the electrochemical polymerization of pyrrole. PPy in the composite film connects the isolated $V_2O_5$ particles. This results in the formation of conductive networks in the composite film cathode, thereby enhancing the Li+ ion diffusion to the surface of the isolated $V_2O_5$ particles and thus increasing the accessibility of the $Li^+$ ions. The specific capacity tests of the Li rechargeable batteries revealed that the discharge capacity of this composite film cathode was higher, i.e., $497\;mAhg^{-1}$, than that of $V_2O_5$/PPy powder or pristine $V_2O_5$.

Effects of Microbial Iron Reduction and Oxidation on the Immobilization and Mobilization of Copper in Synthesized Fe(III) Minerals and Fe-Rich Soils

  • Hu, Chaohua;Zhang, Youchi;Zhang, Lei;Luo, Wensui
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.4
    • /
    • pp.534-544
    • /
    • 2014
  • The effects of microbial iron reduction and oxidation on the immobilization and mobilization of copper were investigated in a high concentration of sulfate with synthesized Fe(III) minerals and red earth soils rich in amorphous Fe (hydr)oxides. Batch microcosm experiments showed that red earth soil inoculated with subsurface sediments had a faster Fe(III) bioreduction rate than pure amorphous Fe(III) minerals and resulted in quicker immobilization of Cu in the aqueous fraction. Coinciding with the decrease of aqueous Cu, $SO_4{^{2-}}$ in the inoculated red earth soil decreased acutely after incubation. The shift in the microbial community composite in the inoculated soil was analyzed through denaturing gradient gel electrophoresis. Results revealed the potential cooperative effect of microbial Fe(III) reduction and sulfate reduction on copper immobilization. After exposure to air for 144 h, more than 50% of the immobilized Cu was remobilized from the anaerobic matrices; aqueous sulfate increased significantly. Sequential extraction analysis demonstrated that the organic matter/sulfide-bound Cu increased by 52% after anaerobic incubation relative to the abiotic treatment but decreased by 32% after oxidation, indicating the generation and oxidation of Cu-sulfide coprecipitates in the inoculated red earth soil. These findings suggest that the immobilization of copper could be enhanced by mediating microbial Fe(III) reduction with sulfate reduction under anaerobic conditions. The findings have an important implication for bioremediation in Cu-contaminated and Fe-rich soils, especially in acid-mine-drainage-affected sites.

Evaluation of the Oral Acute Toxicity of Black Ginseng in Rats

  • Lee, Mi-Ra;Oh, Chang-Jin;Li, Zheng;Li, Jing-Jie;Wang, Chun-Yan;Wang, Zhen;Gu, Li-Juan;Lee, Sang-Hwa;Lee, Jae-Il;Lim, Beong-Ou;Sung, Chang-Keun
    • Journal of Ginseng Research
    • /
    • v.35 no.1
    • /
    • pp.39-44
    • /
    • 2011
  • We studied the acute oral toxicity of black ginseng (BG) produced by heat process in rats. Single acute BG extract doses of 0, 5, 10, and 15 g/kg dissolved in saline were administered by oral gavage and the animals were kept under observation for 14 days. The single administration of BG extract up to 15 g/kg did not produce mortality, behavioral change or abnormal clinical signs in the rats. These results indicated that the oral $LD_{50}$ of the BG extract in the rats is higher than 15 g/kg. Compared to the control group, no treatment-related biologically significant effects of BG extract were noted in the measurements of the body weight or food intake. At the end of the period, the biochemical parameters and hematological parameters were analyzed in the plasma and blood. A histopathological examination of the liver and kidney was also conducted. Only the blood nitrogen urea and potassium levels in the biochemical indices showed significant differences at 10 and 15 g/kg doses of BG extract compared to the control group. These changes were not considered to be due to the toxicity. None of the other clinical chemistry parameters were affected. Therefore, these results indicate that the BG by heat processing is virtually nontoxic.

Characterization of a New Poly(acrylonitrile-itaconate) based Gel-electrolyte (새로운 poly(acrylonitrile-itaconate)공중합체를 기초로 한 젤-전해질의 특성)

  • Choi B. K.;Kim S. H.;Gong M. S.
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.3
    • /
    • pp.169-172
    • /
    • 2000
  • A new gel polymer electrolyte based on the modified polyacrylonitrile (PAN), polyacrylonitrile-co-bis[2-(2-methoxyethoxy)ethyl]itaconate (abbreviated as PANI) copolymer was synthesized in expectation of enhanced trapping ability of liquid electrolytes. PAN and PANI blend was complexed with organic solvents, ethylene carbonate (EC) and dimethyl carbonate (DMC), and $LiClO_4$ salt. The highest room temperature conductivity of $2\times10^{-3}\;Scm^{-1}$ was found for a film of 25PAN+10PANl+50EC/DMC+$15LiClO_4$. The solvent-rich crystalline part decreases due to the blending of PANI and therefore number of charge carriers increases giving higher ionic conductivity. The addition of PAM as a host polymer in the PAN-based gels has beneficial effects such as higher ionic conductivity, better thermal characteristics, better miscibility with solvent, wider electrochemical stability, and better interfacial stability with lithium electrode, though it exhibits slightly less mechanical rigidity.

Syntheses and Thermal Behaviors of Rb(FOX-7)·H2O and Cs(FOX-7)·H2O

  • Luo, Jinan;Xu, Kangzhen;Wang, Min;Song, Jirong;Ren, Xiaolei;Chen, Yongshun;Zhao, Fengqi
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2867-2872
    • /
    • 2010
  • Two new energetic organic alkali metal salts, 1,1-diamino-2,2-dinitroethylene rubidium salt [Rb(FOX-7)${\cdot}H_2O$] and 1,1-diamino-2,2-dinitroethylene cesium salt [Cs(FOX-7)${\cdot}H_2O$], were synthesized by reacting of 1,1-diamino-2,2-dinitroethylene (FOX-7) and rubidium chloride or cesium chloride in alkali methanol aqueous solution, respectively. The thermal behaviors of Rb(FOX-7)${\cdot}H_2O$ and Cs(FOX-7)${\cdot}H_2O$ were studied with DSC and TG methods. The critical temperatures of thermal explosion of the two compounds are 216.22 and $223.73^{\circ}C$, respectively. Specific heat capacities of the two compounds were determined with a micro-DSC method, and the molar heat capacities are 217.46 and $199.47\;J\;mol^{-1}\;K^{-1}$ at 298.15 K, respectively. The adiabatic times-to-explosion were also calculated to be a certain value of 5.81 - 6.36 s for Rb(FOX-7)${\cdot}H_2O$, and 9.92 - 10.54 s for Cs(FOX-7)${\cdot}H_2O$. After FOX-7 becoming alkali metal salts, thermal decomposition temperatures of the compounds heighten with the rise of element period, but thermal decomposition processes become intense.

Orange Phosphorescent Organic Light-emitting Diodes Using a Spirobenzofluorene-type Phospine Oxides as Host Materials

  • Jeon, Young-Min;Lee, In-Ho;Lee, Chil-Won;Lee, Jun-Yeob;Gong, Myoung-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2955-2960
    • /
    • 2010
  • Spiro-type orange phosphorescent host materials, 9-diphenylphosphine oxide-spiro[fluorene-7,9'-benzofluorene] (OPH-1P) and 5-diphenylphosphine oxide-spiro[fluorene-7,9'-benzofluorene] (OPH-2P) were successfully prepared by a lithiation reaction followed by a phosphination reaction with diphenylphosphinic chloride. The EL characteristics of OPH-1P and OPH-2P as orange host materials doped with iridium(III) bis(2-phenylquinoline)acetylacetonate ($Ir(pq)_2acac$) were evaluated. The electroluminescence spectra of the ITO (150 nm)/DNTPD (60 nm)/NPB (30 nm)/OPH-1P or OPH-2P: $Ir(pq)_2acac$ (30 nm)/BCP (5 nm)/$Alq_3$ (20 nm)/LiF (1 nm)/Al (200 nm) devices show a narrow emission band with a full width at half maximum of 75 nm and $\lambda_{max}$ = 596 nm. The device obtained from OPH-1P doped with 3% $Ir(pq)_2acac$ showed an orange color purity of (0.580, 0.385) and an efficiency of (14 cd/A at 7.0 V). The ability of the OPH-P series to combine a high triple energy with a low operating voltage is attributed to the inductive effect of the P=O moieties and subsequent energy lowering of the LUMO, resulting in the enhancement of both the electron injection and transport in the device. The overall result is a device with an EQE > 8% at high brightness, but operating voltage of less than 6.4 V, as compared to the literature voltages of ~10 V.

Effect of pH in Sodium Periodate based Slurry on Ru CMP (Sodium Periodate 기반 Slurry의 pH 변화가 Ru CMP에 미치는 영향)

  • Kim, In-Kwon;Cho, Byung-Gwun;Park, Jin-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.117-117
    • /
    • 2008
  • In MIM capacitor, poly-Si bottom electrode is replaced with metal bottom electrode. Noble metals can be used as bottom electrodes of capacitors because they have high work function and remain conductive in highly oxidizing conditions. In addition, they are chemically very stable. Among novel metals, Ru (ruthenium) has been suggested as an alternative bottom electrode due to its excellent electrical performance, including a low leakage of current and compatibility to high dielectric constant materials. Chemical mechanical planarization (CMP) process has been suggested to planarize and isolate the bottom electrode. Even though there is a great need for development of Ru CMP slurry, few studies have been carried out due to noble properties of Ru against chemicals. In the organic chemistry literature, periodate ion ($IO_4^-$) is a well-known oxidant. It has been reported that sodium periodate ($NaIO_4$) can form $RuO_4$ from hydrated ruthenic oxide ($RuO_2{\cdot}nH_2O$). $NaIO_4$ exist as various species in an aqueous solution as a function of pH. Also, the removal mechanism of Ru depends on solution of pH. In this research, the static etch rate, passivation film thickness and wettability were measured as a function of slurry pH. The electrochemical analysis was investigated as a function of pH. To evaluate the effect of pH on polishing behavior, removal rate was investigated as a function of pH by using patterned and unpatterned wafers.

  • PDF

Insertion of Alkali Metals into Open Framework, TaPS6 by Using Alkali Metal Halide Fluxes: Single Crystal Structures of K0.18TaPS6, K0.28TaPS6, and Rb0.09TaPS6

  • Do, Jung-Hwan;Dong, Yong-Kwan;Kim, Jung-Wook;Hahn, Song-I;Yun, Ho-Seop
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.8
    • /
    • pp.1260-1264
    • /
    • 2005
  • Three new quaternary tantalum thiophosphates, $K_{0.18}TaPS_6,\;K_{0.28}TaPS_6,\;and\;Rb_{0.09}TaPS_6$ have been synthesized by using reactive alkali metal halide fluxes and structurally characterized by single crystal X-ray diffraction techniques. The crystal structures of $K_{0.18}TaPS_6,\;K_{0.28}TaPS_6,\;and\;Rb_{0.09}TaPS_6$ contain 3-dimensional open framework anions, $[TaPS_6]^{x-}$(x = 0.09, 0.18, 0.28) with the empty channel which disordered alkali metal cations, $K^+\;and\;Rb^+$ are located in. Crystal data: $K_{0.18}TaPS_6$, tetragonal, space group$I4_1$/acd (no. 142), a=15.874(3) $\AA$, c=13.146(4) $\AA$, V=3312.7(12) ${\AA}^3$, K, Z=16, R1=0.0545. Crystal data: $K_{0.28}TaPS_6$, tetragonal, space group $I4_1$/acd (no. 142), a=15.880(2) $\AA$, c=13.134(3) $\AA$, V=3312.1(10) ${\AA}^3$, Z=16, R1=0.0562. Crystal data: $Rb_{0.09}TaPS_6$, tetragonal, space group I41/acd (no. 142), a=15.893(3) $\AA$, c=13.163(4) $\AA$, V=3324.7(15) ${\AA}^3$, Z=16, R1=0.0432.

Water Quality Characteristics and Fish Community of the Gucheon Reservoir and Yeoncho Reservoir in Geoge Island

  • Han, Jeong-Ho;Paek, Woon-Kee;An, Kwang-Guk
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.1
    • /
    • pp.29-45
    • /
    • 2015
  • Water chemistry and fish community, based on fish compositions and ecological characteristics(trophic/tolerance guilds and condition factor), were compared in Gucheon Reservoir($G_cR$) and Yeoncho Reservoir($Y_cR$). Chemical parameters of water quality such as BOD, COD, nutrient(N, P) and suspended solids indicated that water quality was better in the $Y_cR$ than $G_cR$, and the temporal variability in seasonal and interannual patterns were greater in the $Y_cR$. The greater variability was mainly attributed to intense dilutions of reservoir water by Asian monsoon rain during July-August. Fish guild analysis indicated that species diversity was higher in the $G_cR$ than the $Y_cR$, and that the proportion of tolerant and omnivore species were greater in the $Y_cR$. Regression analysis of body weight-total length showed that the regression coefficient(b value) was lower in the $G_cR$(2.15 ~ 2.40) than the $Y_cR$(2.59 ~ 3.14). Condition factor(K) of fish against the total length showed negative slope of Zacco temminckii, Carassius auratus, Pseudorasbora parva and Rhinogobius brunneus population in the $G_cR$, and a positive slope of Carassius auratus and Rhinogobius brunneus population in $Y_cR$. Overall, our data suggest that the growth of the fish populations, based on the length-weight relations and condition factor, reflected the trophic regime of nutrients and organic matter.

Preparation of Silica Monoliths with Macropores and Mesopores and of High Specific Surface Area with Low Shrinkage using a Template Induced Method

  • Guo, Jianyu;Lu, Yan;Whiting, Roger
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.447-452
    • /
    • 2013
  • In this study we report a new method for the synthesis of a silica monolithic column bed with bimodal pores (throughpores and mesopores). The template induced synthesis method was used to direct bimodal pores simultaneously instead of the usual post base-treating method. Block polymer Pluronic F127 was chosen as a dual-function template to form hierarchically porous silica monolith with both macropores and mesopores. This is a simplification of the method of monolithic column preparation. Poly(ethylene glycol) was used as a partial substitute for F127 can effectively prevent shrinkage during the monolith aging process without losing much surface area (944 $m^2/g$ to 807 $m^2/g$). More importantly, the resultant material showed a much narrower mesopore size (centered at 6 nm) distribution than that made using only F127 as the template reagent, which helps the mass transfer process. The solvent washing method was used to remove the remaining organic template, and it was proved to be effective enough. The new synthesis method makes the fabrication of the silica monolithic column (especially capillary column) much easier. All the structure parameters indicate that monolith PFA05 prepared by the above method is a good material for separation, with the merits of much higher surface area than usual commercial HPLC silica particles, suitable mesopore volume, narrow mesopore size distribution, low shrinkage and it is easily prepared.