Insertion of Alkali Metals into Open Framework, TaPS₆ by Using Alkali Metal Halide Fluxes: Single Crystal Structures of K_{0.18}TaPS₆, K_{0.28}TaPS₆, and Rb_{0.09}TaPS₆

Junghwan Do,[†] Yongkwan Dong, Jungwook Kim,[‡] Song-i Hahn, and Hoseop Yun^{*}

Department of Molecular Science and Technology, Ajou University, Suwon 442-749, Korea. *E-mail: hsyun@ajou.ac.kr *Department of Chemistry and Research Center for Organic Display, Konkuk University, Seoul 143-701, Korea *Samsung Electronics Co., Suwon 443-742, Korea Received June 10, 2005

Three new quaternary tantalum thiophosphates, $K_{0.18}TaPS_6$, $K_{0.28}TaPS_6$, and $Rb_{0.09}TaPS_6$ have been synthesized by using reactive alkali metal halide fluxes and structurally characterized by single crystal X-ray diffraction techniques. The crystal structures of $K_{0.18}TaPS_6$, $K_{0.28}TaPS_6$, and $Rb_{0.09}TaPS_6$ contain 3-dimensional open framework anions, $[TaPS_6]^{x-}$ (x = 0.09, 0.18, 0.28) with the empty channel which disordered alkali metal cations, K^+ and Rb^+ are located in. Crystal data: $K_{0.18}TaPS_6$, tetragonal, space group $I4_{1/acd}$ (no. 142), a=15.874(3) Å, c=13.146(4) Å, V=3312.7(12) Å^3, K, Z=16, R1=0.0545. Crystal data: $K_{0.28}TaPS_6$, tetragonal, space group $I4_{1/acd}$ (no. 142), a=15.880(2) Å, c=13.134(3) Å, V=3312.1(10) Å^3, Z=16, R1=0.0562. Crystal data: Rb_{0.09}TaPS₆, tetragonal, space group $I4_{1/acd}$ (no. 142), a=15.893(3) Å, c=13.163(4) Å, V=3324.7(15) Å^3, Z=16, R1=0.0432.

Key Words : Metal halide fluxes, Chalcogenides, Insertion into open framework

Introduction

Many layered chalcogenide phases such as MQ_2 (M = Ti, Zr, Hf, V, Nb, Ta, Mo, W; Q = S, Se) and MPQ₃ (M = Mg, V, Mn, Fe, Co, Ni, Zn, Cd, In; Q = S, Se) are known to readily intercalate alkali metal cations.^{1,2} These 2-dimensional layered intercalation phases are intensively studied and considered as an important class of solid state materials because of their potential applications in solid electrolytes, sensors, electrochromic displays and batteries.³ In intercalation reactions, the charge transfer from the ionic guest species into the crystalline host lattice is an important phenomenon. Generally, the concentration of cationic guest species is fixed by the chemical composition or can be altered by reduction of the host lattice through electrochemical procedure.⁴

Given the many utility of semiconducting properties and natural fragility of low-dimensional structures such as 2dimensional layers (upon the insertion/desertion of guest), it is important and useful to expand to new metal chalcogenide phases with rigid 3-dimensional open framework structures. However, to the best our knowledge, such an example has not been reported yet. This is probably due to the fact that the host structure is not retained during the insertion procedure by using traditional synthetic methods. Therefore, new synthetic conditions may be necessary to stabilize compounds with framework structures that cannot be prepared by conventional techniques. To extend this work and obtain solids with alkali metal cations in the 3dimensional framework lattice, we carried out a synthetic approach using the reactive halide fluxes, $Li_xM_yCl_z$ (M = K, Rb) in molten form as a reaction media to incorporate the alkali metal cations into the structures. We have already demonstrated that the alkali metal halide eutectic mixture

methods represent another direction for the synthesis of novel alkali metal-incorporated chalcogenides.⁵ Examples include several quaternary thiophosphates such as ANb_2PS_{10} (A=K, Rb, Cs) and $ATiPS_5$ (A=K, Rb) [5c,d]. Here, we report synthesis and structures of $K_{0.18}TaPS_6$, $K_{0.28}TaPS_6$, and $Rb_{0.09}TaPS_6$ that exhibit the charge transfer of guest atoms and substantial structural modification of the host framework, $TaPS_6$.⁶

Experimental Section

Alkali metal halide flux synthesis. The title compounds were prepared by the reactions of a 1 : 1 : 6 ratios of the elements Ta powder (Cerac 99.9%), P powder (Cerac 99.5%), and S powder (Aldrich 99.999%) in a eutectic mixture of KCl/LiCl or RbBr/NaBr.

Synthesis of K_{0.18}**TaPS**₆: The mass ratio of reactants and fluxes was 1.0 : 4.0 for K_{0.18}TaPS₆. The reagent were mixed, sealed in an evacuated silica tube ($\sim 10^{-3}$ torr), and heated at 680, where they were kept for 3 days. The tubes were cooled to at a rate of 6/hr to 300 followed by rapid cooling to room temperature. The solid products were washed with water to remove excess halide fluxes. Product recovery gave black shiny polyhedral crystals of K_{0.18}TaPS₆. Electron microprobe analysis of the crystals gave an average composition of K_{0.15}Ta₁P_{0.98}S_{5.48}. The structural details of the compound were determined by single-crystal X-ray diffraction study. The product slowly decayed in air but is stable in water.

Synthesis of K_{0.28}TaPS₆: The reagent were mixed, sealed in an evacuated silica tube ($\sim 10^{-3}$ torr), and heated at 880 °C, where they were kept for 4 day. The tubes were cooled to at a rate of 6 °C/hr to 300 °C followed by rapid cooling to room temperature. The solid products were washed with water to remove excess halide fluxes. Product recovery gave black shiny polyhedral crystals of K_{0.18}TaPS₆. Electron microprobe analysis of the crystals gave an average composition of K_{0.22}Ta₁P_{0.92}S_{5.46}. The structural details of the compound were determined by single-crystal X-ray diffraction study. The product slowly decayed in air but is stable in water.

Synthesis of Rb_{0.09}**TaPS**₆: The mass ratio of reactants and fluxes was 1.0:2.0 for Rb_{0.09}TaPS₆. The reagent were mixed, sealed in an evacuated silica tube ($\sim 10^{-3}$ torr), and heated at 700 °C, where they were kept for 7 days. The tubes were cooled to at a rate of 4 °C/hr to room temperature. The solid products were washed with water to remove excess halide fluxes. Product recovery gave black shiny polyhedral crystals of K_{0.18}TaPS₆. Electron microprobe analysis of the crystals indicated the presence of Rb, Nb, P, and S. The structural details of the compound were determined by single-crystal X-ray diffraction study. The product slowly decayed in air but is stable in water. For all compounds, no other elements such as halogen atoms and other alkali metals were detected.

Characterization. Elemental analysis on the products was performed with a Hitachi S-2400/Microspec X600 scanning electron microprobe (SEM) equipped with a micro analyzer wavelength dispersive X-ray spectroscopy (WDS) system detector. The samples were analyzed using a 20 kV accelerating voltage and an accumulation time of 30s.

Crystal Structures.

Crystallography of K_{0.18}TaPS₆: Of 975 reflections collected in the 2θ range 3.0° -55.0° using an ω - 2θ scans on an MXC Science MXC³ diffractometer, 877 were unique reflections (R_{int} = 0.0073). An analytical absorption correction

using the analytical method ($T_{min} = 0.292$, $T_{max} = 0.356$) was applied.⁷ The structure was solved and refined against F² using SHELXS and SHELXL97,^{8,9} 45 variables, wR2 = 0.1220 (the 877 unique reflections having $F_o^2 > 0$), R1 = 0.0545 (the 822 reflections having $F_o^2 > 2\sigma(F_o^2)$), GOF = 1.391, and max/min residual electron density 2.247/-2.418 eÅ⁻³.

Crystallography of K_{0.28}**TaPS**₆: Of 1120 reflections collected in the 2 θ range 3.0°-55.0° using an ω -2 θ scans on an MXC Science MXC³ diffractometer, 959 were unique reflections (R_{int} = 0.000). An analytical absorption correction using the analytical method (T_{min} = 0.460, T_{max} = 0.513) was applied.⁷ The structure was solved and refined against F² using SHELXS and SHELXL97,^{8,9} 44 variables, wR2 = 0.1003 (the 959 unique reflections having F₀² > 0), R1 = 0.0562 (the 748 reflections having F₀² > 2 σ (F₀²)), GOF = 1.374, and max/min residual electron density 1.465/–2.595 eÅ⁻³.

Crystallography of Rb_{0.09}**TaPS**₆. Of 964 reflections collected in the 2θ range 3.0° -55.0° using an ω - 2θ scans on an MXC Science MXC³ diffractometer, 872 were unique reflections (R_{int} = 0.000). An analytical absorption correction using the analytical method (T_{min} = 0.392, T_{max} = 0.444) was applied.⁷ The structure was solved and refined against F² using SHELXS and SHELXL97,^{8,9} 45 variables, wR2 = 0.0836 (the 872 unique reflections having F²_o > 0), R1 = 0.0432 (the 652 reflections having F²_o > 2 σ (F²_o)), GOF = 1.200, and max/min residual electron density 1.600/–1.245 eÅ⁻³. For all the cases, search for additional potential symmetry with the use of the MISSYM and ADDSYM algorithm in the PLATON program package could not found

Table 1. Crystallographic details for A_x TaPS₆ (A = K, Rb; x = 0.09, 0.18, 0.28)

empirical formula	K _{0.18} PS ₆ Ta	K _{0.28} PS ₆ Ta	Rb 0.09 PS 6 Ta	
formula weight	411.36	415.27	412.01	
crystal system	tetragonal	tetragonal	tetragonal	
space group	I4 ₁ /acd (no. 142)	I4 ₁ /acd (no. 142)	$I4_1/acd(no. 142)$	
a, Å	15.874(3)	15.880(2)	15.893(3)	
c, Å	13.146(4)	13.134(3)	13.163(4)	
V, Å ³	3312.7(12)	3312.1(10)	3324.7(15)	
Z	16	16	16	
Т, К	293(2)	293(2)	293(2)	
λ, Å	0.71073	0.71073	0.71073 A	
$\rho_{\rm calc}, {\rm g/cm}^3$	3.283	3.317	3.292	
μ , cm ⁻¹	149.43	150.00	153.47	
F(000)	2983	3016	2997	
Crystal size, mm ³	0.7 imes 0.1 imes 0.1	$0.35 \times 0.1 \times 0.1$	$0.34 \times 0.06 \times 0.06$	
measured reflections	907	959	872	
independent reflections	877	959	872	
2θ range, deg	5.14-54.98	5.14-54.98	5.12-55.0	
GOF on F_0^2	1.391	1.374	1.200	
R1 [I>2σ(I)]	0.0545	0.0562	0.0432	
wR2 (all data) ^a	0.1220	0.1003	0.0836	
A, B^a	0.0147, 403.29	0.0045, 243.96	0.0234, 69.29	
extinction coefficient	0.00014(2)	n/a	0.00015(2)	

wR2 = $[\Sigma w(|F_o| - |F_c|)^2 / \Sigma w|F_o|^2]^{1/2}$; $w = 1/[\sigma^2(F_o^2) + (AP)^2 + BP]$; $P = [Max(F_o^2, 0) + 2F_c^2] / 3$ (all data)

the other symmetry in this structure.¹⁰

Results and Discussion

The structures of the compounds are determined by singlecrystal X-ray diffraction. Crystallographic details, fractional atomic coordinates and equivalent isotropic displacement parameters are given in Table 1 and 2, respectively. Selected bond distances for all the compounds are listed in Table 3. For K_{0.18}TaPS₆, one crystallographically distinct tantalum atom is coordinated by eight sulfur atoms in a distorted bicapped prismatic arrangement with distances ranging from 2.491(4) to 2.564(4) Å. Two TaS₈ bicapped prisms share a common face to form a Ta_2S_{12} dimeric core. Four sulfur atoms sharing rectangular prism faces are in pairs with two disulfide ions, (S-S)²⁻. Each one of the bicapped sulfur atoms and unshared edge sulfur atoms in Ta₂S₁₂ unit are bound to phosphorous atoms. Additional two sulfur atoms from neighboring Ta_2S_{12} unit are connected to phosphorous atoms to complete PS_4 tetrahedral coordination. Each Ta_2S_{12} bicapped biprism connects four phosphorous atoms to build up left- and right-handed helices extended along the 41screw axis, Figure 1. The left- and right-handed helices interwind to each other forming 8-ring channel in the [001] direction counting the number of PS_4 and Ta_2S_{12} units, Figure 2. The free diameter of the channel is about 4.69 Å. Partially filled and heavily disordered alkali metal cations are found in the channel. A similar structural motif of TaPS₆

Table 2. Atomic coordinates (× 10^4) and equivalent isotropic displacement parameters (Å² × 10^3) of A_xTaPS₆ (A = K, Rb; x = 0.09, 0.18, 0.28). U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	Х	У	Z	U(eq)
K _{0.18} TaPS ₆				
К	2500	660(2)	0	43(19)
Та	734(1)	3234(1)	1250	18(1)
Р	4303(4)	0	2500	20(1)
S (1)	4535(3)	2946(3)	2494(3)	23(1)
S (2)	3534(3)	3944(3)	190(3)	27(1)
S (3)	-5(3)	325(2)	1256(4)	26(1)
K _{0.28} TaPS ₆				
K	2500	663(15)	0	95(17)
Та	727(1)	3227(1)	1250	17(1)
Р	4305(3)	0	2500	19(1)
S (1)	4536(2)	2945(2)	2487(3)	21(1)
S (2)	3535(2)	3948(2)	192(3)	23(1)
S (3)	-1(2)	322(2)	1258(2)	24(1)
Rb0.09 TaPS6				
Rb	-2500	648(12)	0	50(10)
Та	743(1)	1757(1)	1250	19(1)
Р	2500	1800(3)	0	23(1)
S (1)	8(2)	318(2)	1250(4)	28(1)
S(2)	444(2)	2965(2)	3(2)	24(1)
S (3)	1449(2)	1032(2)	2685(2)	29(1)

Table 3.	Selected	bond di	stances	[Å] foi	r A _x TaPS	$_{6}(A = K,$	Rb; x =
0.09, 0.1	8, 0.28)						

U E Da					
K _{0.18} IaPS ₆					
Ta-S(2)#4	2.491(4)	Ta-S(2)#5	2.491(4)		
Ta-S(1)#6	2.533(4)	Ta-S(1)#7	2.533(4)		
Ta-S(1)#2	2.561(4)	Ta-S(1)#8	2.561(4)		
Ta-S(3)#9	2.564(4)	Ta-S(3)#1	2.564(4)		
Ta-Ta#9	3.2967(19)				
P-S(3)#10	2.037(6)	P-S(3)#11	2.037(6)		
P-S(2)#12	2.040(6)	P-S(2)#3	2.040(6)		
S(1)-S(1)#13	2.045(8)				
K _{0.28} TaPS ₆					
Ta-S(2)#4	2.504(3)	Ta-S(2)#5	2.504(3)		
Ta-S(1)#6	2.528(3)	Ta-S(1)#7	2.528(3)		
Ta-S(1)#3	2.556(3)	Ta-S(1)#8	2.556(3)		
Ta-S(3)#1	2.577(3)	Ta-S(3)#9	2.577(3)		
Ta-Ta#9	3.2670(17)				
P-S(3)#10	2.034(4)	P-S(3)#11	2.034(4)		
P-S(2)#12	2.048(5)	P-S(2)#2	2.048(5)		
S(1)-S(1)#13	2.040(6)				
Rb _{0.09} TaPS ₆					
Ta-S(3)	2.480(3)	Ta-S(3)#3	2.480(3)		
Ta-S(2)#2	2.539(3)	Ta-S(2)#1	2.539(3)		
Ta-S(1)	2.568(3)	Ta-S(1)#3	2.568(3)		
Ta-S(2)	2.571(3)	Ta-S(2)#3	2.571(3)		
Ta-Ta#2	3.3406(14)				
P-S(3)#3	2.041(5)	P-S(3)#4	2.041(5)		
P-S(1)#3	2.043(6)	P-S(1)#4	2.043(6)		
S(2)-S(2)#2	2.044(6)				
Symmetry transform	mations for $\mathbf{K}_{0.1}$	18 TaPS ₆ :			
#1 - y + 1/4, -x -	+ 1/4, -z + 1/4	#2 y - 1/4, x - 1	/4, z – 1/4		
#3 - y + 3/4, x -	1/4, -z + 1/4	#4 y - 1/4, -x +	3/4, z + 1/4		
#3 = x + 1/2, y, = #7 = x + 1/2, -y +	z ·1/2z+1/2.	$\#6 = y + 1/4, = x^{-1}$ #8 = x - 1/2, = y - z + 1/2, = x - 1/2,	+ 3/4, z = 1/4		
#9 - x + 0, -y + 1/	/2,z+0	#10 x + 1/2, y, -z	z + 1/2		
#11 x + 1/2, -y,z		#12 - y + 3/4, -x	x + 1/4, z + 1/4		
#13 - x + 1, -y + Symmetry transfor	1/2,z+0 mations for K ar	"ТаРЅ <i>с</i>			
#1 - y + 1/4, -x - x	+ $1/4, -z + 1/4$	#2 - y + 3/4, x -	1/4, -z + 1/4		
#3 y - 1/4, x - 1	/4, z – 1/4	#4 y - 1/4, -x + 3/4, z + 1/4			
#5 - x + 1/2, y, -	$Z = 1/2 = \pi + 1/2$	#6 - y + 1/4, -x + 1/2, y = 1/2	#0 - y + 1/4, -x + 3/4, z - 1/4 #8 y - 1/2 y -z + 1/2		
# / -x + 1/2, -y - # 9 - x + 0 - y +	$\frac{1}{2}, \frac{-2}{2} + \frac{1}{2}$	#10 x + 1/2, y, -z + 1/2 #10 x + 1/2, y, -z + 1/2			
#11 x + 1/2, -y, z	z	#12 - y + 3/4, -x + 1/4, z + 1/4			
#13 - x + 1, -y +	1/2, z+0	- /			
Symmetry transform $\#1 y = 1/4 + 1/4$	mations for Rb (42 - x + 0 - y + 0	1/2 z+		
#3 - y + 1/4, -x + 1/4	4, -z + 1/4	$\frac{\pi 2}{4} + \frac{x}{1/4} + \frac{y}{-x} + \frac{y}{1/4} + \frac{y}{-x} + \frac{y}{1/4} + \frac{y}{-x} + \frac{y}{$	1/4, z - 1/4		

framework is also observed in K_{0.28}TaPS₆, and Rb_{0.09}TaPS₆.

The crystal structures of $A_x TaPS_6$ (A = K, Rb; x = 0.09, 0.18, 0.28) are closely related to that of a known ternary compound, TaPS₆, which contains the same framework structure with empty channels. However, the structural differences between $A_x TaPS_6$ (A = K, Rb; x = 0.09, 0.18, 0.28) and TaPS₆ are found in intermetallic distances. Ta-Ta interatomic distances in $A_x TaPS_6$ (A = K, Rb; x = 0.09, 0.18, 0.28) are shorter than one found in TaPS₆ ($A_{Ta-Ta} = 3.365(1)$ Å for TaPS₆, 3.341(1) Å for Rb_{0.09}TaPS₆, 3.297(2) Å for K_{0.18}TaPS₆, and 3.266(2) Å for K_{0.28}TaPS₆) and show

Insertion of Alkali Metals into Open Framework

Figure 1. View of a right-handed helix. Ta_2S_{12} bicapped biprismatic units are shown light shaded polyhedra and P and S atoms as filled and open circles, respectively.

Figure 2. View of $A_x TaPS_6$ in the [001] direction showing the channels. The Ta_2S_{12} bicapped biprismatic units are shown light shaded polyhedra and P and S atoms as filled and open circles, respectively.

Figure 3. Plots of interatomic distances (Å) and oxidation states for TaPS₆, $Rb_{0.09}TaPS_6$, $K_{0.18}TaPS_6$, $K_{0.28}TaPS_6$, $K_{0.38}TaPS_6$, $K_{0.46}TaPS_6$, $K_{0.5}TaPS_6$, and BaTaS₃.

apparent trends. Substantial shortening of Ta-Ta interatomic distances by increasing the concentration of guest ions implies that the electrons released by K or Rb are transferred to pair-wise tantalum metal sites. The concentration of electrons transferred to pair-wise tantalum sites, i.e., reduction quantity of Ta^{5+} to $Ta^{(5-x)+}$ (x = 0.09, 0.18, 0.28), show a good linear relationship between pure Ta^{5+} and Ta^{4+} , Figure 3.

Very recently, two analogues, $K_{0.38}$ TaPS₆ and $Rb_{0.46}$ TaPS₆ are synthesized by alkali metal polychalcophosphate fluxes.¹¹ In the structures, Ta-Ta interatomic distances for $K_{0.38}$ TaPS₆ and $Rb_{0.46}$ TaPS₆ are 3.142(2) and 3.1011(5) Å, respectively that strongly support the linear relationships of Ta-Ta distances vs. oxidation state of tantalum metals (Figure 3).¹² Also, niobium analogues, $ANb_2P_2S_{12}$ (A = K, Rb, Cs) prepared by alkali metal polychalcophosphate flux methods demonstrate comparable Nb-Nb interatomic distances, 3.087(1) Å for $KNb_2P_2S_{12}$, 3.107(2) Å for RbNb₂P₂S₁₂, and 3.117(2) Å for CsNb₂P₂S₁₂ (Figure 3, effective ionic radii of Nb and Ta for CN = 8 are same to 0.88 Å).¹³ Note that though the size requirement of alkali metal cations may increase Nb-Nb interatomic distances, the increments are ignorable.

These compounds are also related to $Ta_4P_4S_{29}$, which can be formulated by $Ta_4P_4(S^{2-})_{16}(S_2^{2-})_4(S_5^{0})$.¹⁴ In $Ta_4P_4S_{29}$, only right handed helices are developed along the *c*-axis which led to larger channel with free diameter, ~9 Å. Infinite sulfur chains are inserted and weakly bound to the channel.

According to previously reported tight-binding band electronic structure calculations on the TaPS₆ based on the crystal structure, the acceptor levels responsible for Li intercalation should be the empty or partially filled *d*-levels of the metal, and the σ^* antibonding levels of the ligands S₂²⁻ anions lie too high in energy to be good acceptor levels.¹⁵ Therefore, structural studies of A_xTaPS₆ (A = K, Rb; x = 0.09, 0.18, 0.28) revealing the reduction sites of tantalum metal for the insertion of K and Rb confirm the calculation

Junghwan Do et al.

results.

Several other niobium analogues containing $NbPS_6$ frameworks have been synthesized by using a similar approach. These phases include higher concentration of alkali metals and will be described elsewhere.

Acknowledgment. This research was supported by the Korean Science and Engineering Foundation (R01-2003-000-10667-0).

References

- (a) Kanatzidis, M. G.; Bissessur, R.; DeGroot, D. C.; Schindler, J. L.; Kannewurf, C. R. Chem. Mater. 1993, 5, 595. (b) Murphy, D. W.; Christian, P. A. Science 1979, 205, 651. (c) Whittingham, M. S. J. Electrochemic. Soc. 1976, 123, 315. (d) Somoano, R. B.; Hadek, V.; Rembaum, A. J. Chem. Phys. 1973, 58, 697. (e) Joensen, P.; Frindt, R. F.; Morrison, S. R. Mater. Res. Bull. 1986, 21, 457. (f) Divigalpitiya, W. M. R.; Frindt, R. F.; Morrison, S. R. Science 1989, 246, 369. (g) Villanueva, A.; Ruiz-Hitzky, E. J. Mater. Chem. 2004, 14, 824. (h) Zubavichus, Y. V.; Golub, A. S.; Lenenko, N. D.; Novikov, Y. N.; Slovokhotov, Y. L.; Danot, M. J. Mol. Cat. A: Chem. 2000, 158, 231. (i) Johnston, D. C.; Frysinger, S. P. Phy. Rev. B 1984, 30, 980.
- (a) Clement, R.; Lomas, L.; Audiere, J. P. Chem. Mater. 1990, 2, 641. (b) Lomas, L.; Lacroix, P.; Audière, J. P.; Clèment, R. J. Mater. Chem. 1991, 1, 475. (c) Ruiz-Hitzky, E. Adv. Mater. 1993, 5, 334. (d) Clement, R.; Garnier, O.; Jegoudez, J. Inorg. Chem. 1986, 25, 1404. (e) Divigalpitiya, W. M. R.; Frindt, R. F.; Morrison, S. R. Science 1989, 246, 369. (f) Ruiz-Hitzky, E.; Jimenez, R.; Casal, B.; Manríquez, V.; Santa-Ana, A.; Gonzàlez, G. Adv. Mater. 1993, 5, 738. (g) Manríquez, V.; Galdámez, A.; Ponce, J.; Brito, I.; Kasaneva, J. Mater. Res. Bull. 1999, 34, 123. (h) Coste, S.; Gautier, E.; Evain, M.; Bujoli-Doeuff, M.; Brec, R.; Jobie S.; Kanatzidis, M. G. Chem. Mater. 2003, 15, 2323.

- (a) Day, P.; Ldsham, R. D. Mol. Cryst. Liq. Cryst. 1982, 86, 163.
 (b) Tieke, B. Mol. Cryst. Liq. Cryst. 1983, 93, 119. (c) Cox, S. D.; Stucky, G. G. J. Phys. Chem. 1991, 95, 710. (d) Pereira, C.; Kokotailo, G. T.; Gorte, R. J. Phys. Chem. 1991, 95, 705. (e) Enzel, P.; Bein, T. J. Phys. Chem. 1989, 93, 6270. (f) Enzel, P.; Bein, T. Chem. Mater. 1992, 4, 819. (g) Thompson, J. E. Chem. Mater. 1991, 3, 777.
- 4. (a) Nazar, L. F.; Zhang, Z. J. Am. Chem. Soc. 1992, 114, 6239. (b) Mehrotra, V.; Giannelis, E. P. Solid State Ionics 1992, 51, 115. (c) Mehrotra, V.; Giannelis, E. P. Solid State Commun. 1991, 77, 155. (d) Soma, Y.; Soma, M.; Harada, I. Chem. Phys. Lett. 1983, 99, 153. (e) Barriga, C.; Lavela, P.; Morales, J.; Pattanayak, J.; Tirado, J. L. Chem. Mater. 1992, 4, 1021.
- (a) Yun, H.; Ryu, G.; Lee, S.; Hoffmann, R. *Inorg. Chem.* 2003, 42, 2253. (b) Kim, C.; Yun, H. *Acta Crystallogr. Sect. C* 2002, 58, i53. (c) Do, J.; Yun, H. *Inorg. Chem.* 1996, 35, 3729. (d) Do, J.; Lee, K.; Yun, H. *J. Solid State Chem.* 1996, 125, 30.
- Fiechter, S.; Kuhs, W. F.; Nitsche, R. Acta Crystallogr. 1980, B36, 2217.
- 7. de Meulenaer, J.; Tompa, H. Acta Crystallogr. 1965, 19, 1014.
- 8. Sheldrick, G. M. Acta Crystallogr. 1990, A46, 467.
- 9. Sheldrick, G. M. SHELX97. Program for the Refinement of Crystal Structure; University of Göttingen: Göttingen, Germany, 1997.
- (a) LePage, Y. J. Appl. Crystallogr. 1987, 20, 264-269. (b) Spek, A. L. Acta Crystallogr. 1990, A46, C34.
- Gutzmann, A.; Näther, C.; Bensch, W. Solid State Sciences 2004, 6, 1155.
- Gieck, C.; Derstroff, V.; Block, T.; Felser, C.; Regelsky, G.; Jepsen, O.; Ksenofontov, V.; Gütlich, P.; Eckert, H.; Tremel, W. *Chem. Eur. J.* 2004, 10, 382.
- 13. Shannon, R. D. Acta Crystallogr. 1976, A32, 751.
- (a) Evain, M.; Queignec, M.; Brec, R.; Rouxel, J. J. Solid State Chem. 1985, 56, 148. (b) Evain, M.; Queignec, M.; Brec, R.; Sourisseau, C. J. Solid State Chem. 1988, 75, 413.
- 15. Evain, M.; Brec, R.; Whangbo, M.-H. J. Solid State Chem. 1987, 71, 244.