• Title/Summary/Keyword: Organic anion transport

Search Result 30, Processing Time 0.025 seconds

Molecular Aspects of Organic Ion Transporters in the Kidney

  • Cha, Seok-Ho;Endou, Hitoshi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.2
    • /
    • pp.107-122
    • /
    • 2001
  • A function of the kidney is elimination of a variety of xenobiotics ingested and wasted endogenous compounds from the body. Organic anion and cation transport systems play important roles to protect the body from harmful substances. The renal proximal tubule is the primary site of carrier-mediated transport from blood into urine. During the last decade, molecular cloning has identified several families of multispecific organic anion and cation transporters, such as organic anion transporter (OAT), organic cation transporter (OCT), and organic anion-transporting polypeptide (oatp). Additional findings also suggested ATP-dependent organic ion transporters such as MDR1/P-glycoprotein and the multidrug resistance-associated protein (MRP) as efflux pump. The substrate specificity of these transporters is multispecific. These transporters also play an important role as drug transporters. Studies on their functional properties and localization provide information in renal handling of drugs. This review summarizes the latest knowledge on molecular properties and pharmacological significance of renal organic ion transporters.

  • PDF

Transport Characteristics of Organic Anions through Poly (1-methyl-4vinylpyridium iodide-co-styrene) Membrane (Poly(1-methyl-4-vinylpyridium iodide-co-styrene)막을 통한 유기음이온의 투과특성)

  • 이광재;한정우박돈희조영일
    • KSBB Journal
    • /
    • v.6 no.2
    • /
    • pp.207-213
    • /
    • 1991
  • In this study poly (1-methyl-4-vinylpyridinium iodide-co-styrene) membrane with pyridinium cation as a fixed carrier was synthesized and the transport characteristics of the membrane was examined over various factors. As the concentration of the fixed carrier in the membrane was increased, the water content was increased. Meanwhile, the counter current of the organic anion and the chloride ion, the following results were obtained. Initial flux of Cl-, organic anion and Na+ decreased with the increasing thickness of membrane, and as the concentration of the fixed carrier increases, the initial flux of Cl- and organic anion increase but the initial flux of Na+ decreased. The flux equation of the organic anion, CCl3COO- was obtained from saturation kinetics as follows;$V_{o}=\frac{(8.67{\times}10^{-5}){\cdot}[NaCl]}{9.63{\times}10^{-2}+[NaCl]} mol/cm^2h$

  • PDF

Pharmacokinetic Modeling and Simulation of the Carrier-Mediated Hepatic Transport of Organic Anions (음이온계 약물의 간수송과정에 있어서 담체매개 수송의 약물동력학적 모델링 및 시뮬레이션)

  • 이준섭;강민희;김묘경;이명구;정석재;심창구;정연복
    • YAKHAK HOEJI
    • /
    • v.47 no.2
    • /
    • pp.110-119
    • /
    • 2003
  • The purpose of the present study was to kinetically investigate the carrier-mediated uptake in the hepatic transport of organic anions, and to simulate the ″in vivo counter-transport″ phenomena, using kinetic model which was developed in this study. The condition that the mobility of carrier-ligand complex is greater than that of free carrier is not essential for the occurrence of ″counter-transport″ phenomenon. To examine the inhibitory effects on the initial uptake of a ligand by the liver, it is necessary to judge whether the true counter-transport mechanism (trans-stimulation) is working or not. The initial plasma disappearance curves of a organic anion were then kinetically analyzed based on a flow model, in which the ligand is eliminated only from the peripheral compartment (liver compartment). Moreover, ″in vive counter-transport″ phenomena were simulated based on the perfusion model which incorporated the carrier-mediated transport and the saturable intracellular binding. The ″in vivo counter-transport″ phenomena in the hepatic transport of a organic anion were well demonstrated by incorporating the carrier-mediated process. However, the ″in vivo counter-transport″ phenomena may be also explained by the enhancement of back diffusion due to the displacement of intracellular binding. In conclusion, one should be more cautious in interpreting data obtained from so-called ″in vivo counter-transport″ experiments.

Effect of Cadmium on Organic Acid Transport System in Renal Basolateral Membrane

  • Kim, Ghi-Chan;Kim, Kyoung-Ryong;Kim, Jee-Yeun;Park, Yang-Saeng
    • The Korean Journal of Physiology
    • /
    • v.30 no.2
    • /
    • pp.279-288
    • /
    • 1996
  • Chronic exposure to cadmium impairs various renal tubular functions, including organic acid (anion) secretion. To investigate the mechanism of cadmium-induced alterations in the organic anion transport system, kinetics of p-aminohippurate (PAH) uptake was studied in renal cortical basolateral membrane vesicles (BLMV) isolated from cadmium-intoxicated rats (adult male Sprague-Dawley). Cadmium intoxication was induced by subcutaneous injections of $CdCl_{2}$ (2 mg Cd/kg per day) for 3 weeks. The renal plasma membrane vesicles were prepared by Percoll gradient centrifugation. The vesicular uptake of $^{14}C$-PAH was determined by rapid filtration technique using Millipore filter. Cadmium intoxication resulted in a marked attenuation of $Na^{+}$-dependent, ${\alpha}$-ketoglutarate (${\alpha}$KG)-driven PAH uptake with no changes in $Na^{+}$ and ${\alpha}$KG-independent transport component. Kinetic analysis indicated that Vmax, but not Km, of the $Na^{+}$-dependent, ${\alpha}$KG-driven component was reduced. A similar reduction of $Na^{+}$-dependent, ${\alpha}$KG-driven PAH uptake was observed in normal membrane vesicles directly exposed to inorganic cadmium in vitro, and this was accompanied by an inhibition of both $Na^{+}$-dependent ${\alpha}$KG uptake and ${\alpha}$KG-PAH exchange activity. These results indicate that during chronic exposure to cadmium, free cadmium ions liberated in the proximal tubular cytoplasm directly interact with the basolateral membrane and impair the active transport capacity for organic anions, most likely due to an inhibition of both $Na^{+}$-dicarboxylate cotransporter and dicarboxylate-organic anion antiporter activities.

  • PDF

Versatilities of Calix[4]pyrrole Based Anion Receptors

  • Lee, Chang-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.768-778
    • /
    • 2011
  • Calixpyrroles and related macrocycles are non-planer synthetic anion receptors that have attracted considerable attentions in recent years. Although the synthesis of calix[4]pyrrole (known as meso-octamethylporphyrinogen) was reported more than 100 years ago, the anion binding properties were first discovered in 1996. The simple calix[4]pyrroles can be synthesized in single step in high yield by condensation of pyrrole with acetone. The compounds showed preferential binding for halide anions including fluoride, phosphate, carboxylate, and chloride in organic media. Efforts to improve the anion affinity of calix[4]pyrrole and to enhance its selectivity have led to the synthesis of a variety of new calixpyrrole derivatives. Among the various modifications, introduction of straps on one side of the calix[4]pyrroles are the most effective. Incorporation of aromatic rings other than pyrroles also exhibited interesting binding behaviour. Introduction of signalling units as part of the strapping element enable to detect the anions on chromogenic or fluorogenic fashion. Finding of the anion transport properties across the membrane and cytotoxic effects of the calix[4]pyrroles open new window for calixpyrrole-related research. The polymer-incorporated systems have also been employed as anion complexants in solvent-solvent extraction. These old, yet easy-to-make macrocycles have well advanced more recently with the discovery of the ion-pair complexation properties. In this review, the synthetic developments and anion binding properties of calixpyrroles for the last decades will be discussed and will cover the advances in calixpyrrole chemistry.

Effect of Probenecid on Tetraethylammonium (TEA) Transport Across Basolateral Membrane of Rabbit Proximal Tubule

  • Choi, Tae-Ryong;Kim, Yong-Keun
    • The Korean Journal of Physiology
    • /
    • v.30 no.2
    • /
    • pp.249-256
    • /
    • 1996
  • The effect of probenecid on the transport of tetraethylammonium (TEA) was studied in renal cortical slices and isolated membrane vesicles to investigate the interaction of organic anion with the organic cation transport system in proximal tubule. Probenecid reversibly inhibited TEA uptake by renal cortical slices in a dose-dependent manner over the concentration range of 1 and 5 mM. The efflux of TEA was not affected by the presence of 3 mM probenecid. Kinetic analysis indicated that probenecid decreased Vmax without significant change in Km. Probenecid inhibited significantly tissue oxygen consumption at concentrations of 3 and 5 mM. However, probenecid did not significantly reduce TEA uptake in brush border and basolateral membrane vesicles prepared from renal cortex even at a concentration as high as 10 mM. These results indicate that probenecid reduces TEA uptake in cortical slices by inhibiting tissue metabolism rather than by an interaction with the organic ration transporter.

  • PDF

Effect of Cadmium on Renal Organic Anion Transport In vitro (신장의 유기음이온 이동에 대한 카드뮴의 영향(In vitro 실험))

  • Park, Yong-Duck;Choi, Jang-Kyu;Park, Yang-Saeng
    • The Korean Journal of Physiology
    • /
    • v.22 no.1
    • /
    • pp.55-62
    • /
    • 1988
  • 가토 신피질 절편에서 p-aminohippurate (PAH) 이동에 대한 카드뮴 이온(Cd)의 영향을 조사하여 다음과 같은 결과를 얻었다. 조직절편과 용액내의 PAH 농도비(S/M PAH)는 용액내에 Cd이 0.1 mM이상 존재할 때에 현저히 감소되었다. PAH influx에 대한 동력학적 분석결과 Cd에 의하여 influx의 최대이동율(즉 $V_{max}$)은 심하게 감소되지만 운반체와 기질간의 친화력(즉 $K_{m}$)에는 변화가 없었으며, 수동적 influx 역시 변화되지 않았다. 신피질조직의 산소 소모율은 1 mM Cd에 의하여 35% 가량 억제되었으며, 신피질 microsome 분획의 Na-K-ATPase 활성도는 Cd 농도가 $10^{-7}M$ 이상일 때 의의있게 억제되었다. 이상의 결과로 미루어 볼 때 신장조직이 카드뮴이온에 직접 노출될 경우 유기음이온의 능동적 이동능이 심하게 저해된다고 사료된다.

  • PDF

Interactions of Cationic Drugs and Cardiac Glycosides at the Hepatic Uptake Level: Studies in the Rat in Vivo, Isolated Perfused Rat Liver, Isolated Rat Hepatocytes and Oocytes Expressing oatp2

  • Dirk K.F.Meijer;Jessica E.van Montfoort
    • Archives of Pharmacal Research
    • /
    • v.25 no.4
    • /
    • pp.397-415
    • /
    • 2002
  • This paper deals with a crucial mechanism for interaction of basic drugs and cardiac glycosides at the hepatic uptake level. Available literature data is provided and new material is presented to picture the differential transport inhibition of bulky (type2) cationic drugs by a number of cardiac glycosides in rat liver. It is shown that the so called organic anion transporting peptide 2 (oatp2) is the likely interaction site: differential inhibition patterns as observed in oocytes expressing oatp2, could be clearly identified also in isolated rat hepatocytes, isolated perfused rat liver and the rat in vivo. The anticipation of transport interactions at the hepatic clearance level should be based on data on the relative affinities of interacting substrates for the transport systems involved along with knowledge on the pharmacokinetics of these agents as well as the chosen dose regimen in the studied species. This review highlights the importance of multispecific tranporter systems such as OATP, accommodating a broad spectrum of organic compounds of various charge, implying potential transport interactions that can affect body distribution and organ clearance.

Development of Inverted Organic Photovoltaics with Anion doped ZnO as an Electron Transporting Layer

  • Jeong, Jae Hoon;Hong, Kihyon;Kwon, Se-Hun;Lim, Dong Chan
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.6
    • /
    • pp.490-497
    • /
    • 2016
  • In this study, 3-dimensional ripple structured anion (chlorine) doped ZnO thin film are developed, and used as electron transporting layer (ETL) in inverted organic photovoltaics (I-OPVs). Optical and electrical characteristics of ZnO:Cl ETL are investigated depending on the chlorine doping ratio and optimized for high efficient I-OPV. It is found that optimized chlorine doping on ZnO ETL enhances the ability of charge transport by modifying the band edge position and carrier mobility without decreasing the optical transmittance in the visible region, results in improvement of power conversion efficiency of I-OPV. The highest performance of 8.79 % is achieved for I-OPV with ZnO:Cl-x (x=0.5wt%), enhanced ~10% compared to that of ZnO:Cl-x (x=0wt%).

Imperatorin is Transported through Blood-Brain Barrier by Carrier-Mediated Transporters

  • Tun, Temdara;Kang, Young-Sook
    • Biomolecules & Therapeutics
    • /
    • v.25 no.4
    • /
    • pp.441-451
    • /
    • 2017
  • Imperatorin, a major bioactive furanocoumarin with multifunctions, can be used for treating neurodegenerative diseases. In this study, we investigated the characteristics of imperatorin transport in the brain. Experiments of the present study were designed to study imperatorin transport across the blood-brain barrier both in vivo and in vitro. In vivo study was performed in rats using single intravenous injection and in situ carotid artery perfusion technique. Conditionally immortalized rat brain capillary endothelial cells were as an in vitro model of blood-brain barrier to examine the transport mechanism of imperatorin. Brain distribution volume of imperatorin was about 6 fold greater than that of sucrose, suggesting that the transport of imperatorin was through the blood-brain barrier in physiological state. Both in vivo and in vitro imperatorin transport studies demonstrated that imperatorin could be transported in a concentration-dependent manner with high affinity. Imperatorin uptake was dependent on proton gradient in an opposite direction. It was significantly reduced by pretreatment with sodium azide. However, its uptake was not inhibited by replacing extracellular sodium with potassium or N-methylglucamine. The uptake of imperatorin was inhibited by various cationic compounds, but not inhibited by TEA, choline and organic anion substances. Transfection of plasma membrane monoamine transporter, organic cation transporter 2 and organic cation/carnitine transporter 2/1 siRNA failed to alter imperatorin transport in brain capillary endothelial cells. Especially, tramadol, clonidine and pyrilamine inhibited the uptake of [$^3H$]imperatorin competitively. Therefore, imperatorin is actively transported from blood to brain across the blood-brain barrier by passive and carrier-mediated transporter.