DOI QR코드

DOI QR Code

Development of Inverted Organic Photovoltaics with Anion doped ZnO as an Electron Transporting Layer

  • Jeong, Jae Hoon (Electrochemical Department, Surface Technology Division, Korea Institute of Materials Science (KIMS)) ;
  • Hong, Kihyon (Electrochemical Department, Surface Technology Division, Korea Institute of Materials Science (KIMS)) ;
  • Kwon, Se-Hun (School of Materials Science and Engineering, Pusan National University) ;
  • Lim, Dong Chan (Electrochemical Department, Surface Technology Division, Korea Institute of Materials Science (KIMS))
  • Received : 2016.11.10
  • Accepted : 2016.11.25
  • Published : 2016.12.31

Abstract

In this study, 3-dimensional ripple structured anion (chlorine) doped ZnO thin film are developed, and used as electron transporting layer (ETL) in inverted organic photovoltaics (I-OPVs). Optical and electrical characteristics of ZnO:Cl ETL are investigated depending on the chlorine doping ratio and optimized for high efficient I-OPV. It is found that optimized chlorine doping on ZnO ETL enhances the ability of charge transport by modifying the band edge position and carrier mobility without decreasing the optical transmittance in the visible region, results in improvement of power conversion efficiency of I-OPV. The highest performance of 8.79 % is achieved for I-OPV with ZnO:Cl-x (x=0.5wt%), enhanced ~10% compared to that of ZnO:Cl-x (x=0wt%).

Keywords

References

  1. D. C. Lim, W. H. Shim, K. -D. Kim, H. O. Seo, J. -H. Lim, Y. S. Jeong, Y. D. Kim, and K. H. Lee, Spontaneous formation of nanoripples on the surface of ZnO thin films as hole-blocking layer of inverted organic solar cells, Sol. Energ. Mat. Sol. Cells, 95 (2011) 3036-3040.
  2. S. -W. Cho, Y. T. Kim, W. H. Shim, S. -Y. Park, K. -D. Kim, H. O. Seo, Nilay Kumar Dey, J. -H. Lim, Y. S. Jeong, K. H. Lee, Y. D. Kim, and D. C. Lim, Influence of surface roughness of aluminium-doped zinc oxide buffer layers on the performance of inverted organic solar cells, Appl. Phys. Lett. 98 (2011) 023102. https://doi.org/10.1063/1.3537961
  3. Z. Yin, S. Sun, T. Salim, S. Wu, X. Huang, Q. He, Y. M. Lam, and H. Zhang, Organic photovoltaic devices using highly flexible reduced graphene oxide films as transparent electrodes, ACS Nano. 4 (2010) 5263-5268. https://doi.org/10.1021/nn1015874
  4. D. C. Lim, K. -D. Kim, S. -Y. Park, E. M. Hong, H. O. Seo, J. -H. Lim, K. H. Lee, Y. S. Jeong, C. S. Song, E. J. Lee, Y. D. Kim, and S. U. Cho, Toward fabrication of high-performing organic photovoltaics: new donor-polymer, atomic layer deposited thin buffer layer and plasmonic effects, Energy Environ. Sci. 8 (2012) 9803-9807.
  5. S. K. Hau, H. L. Yip, H. Ma, and A. K. -Y. Jen, High performance ambient processed inverted polymer solar cells through interfacial modification with a fullerene self-assembled monolayer, Appl. Phys. Lett. 233304 (2013) 1-4.
  6. F. C. Krebs, S. A. Gevorgyan, and J. Alstrup, A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies, J. Mater. Chem. 19 (2009) 5442. https://doi.org/10.1039/b823001c
  7. J. Wang, W. Weng, M. Tsai, M. Lee, S. Horng, T. Perng, C. Kei, C. Yu, and H. Meng, Highly efficient flexible inverted organic solar cells using atomic layer deposited ZnO as electron selective layer, J. Mater. Chem. 20 (2010) 862. https://doi.org/10.1039/B921396A
  8. B. Zimmermann, H. Schleiermacher, M. Niggemann, and U. Wurfel, ITO-free flexible inverted organic solar cell modules with high fill factor prepared by slot die coating, Sol. Energy. Mater. Sol. Cells. 95 (2011) 1587-1589. https://doi.org/10.1016/j.solmat.2010.11.025
  9. Z. Liang, Q. Zhang, L. Jiang, and G. Cao, ZnO cathode buffer layers for inverted polymer solar cells, Energy Environ. Sci. 8 (2015) 3442-3476. https://doi.org/10.1039/C5EE02510A
  10. H. O. Seo, S. -Y. Park, W. H. Shim, K. -D. Kim, K. H. Lee, M. Y. Jo, J. H. Kim, E. S. Lee, D. -W. Kim, Y. D. Kim, and D. C. Lim, Ultrathin $TiO_2$ Films on ZnO Electron-collecting Layers of Inverted Organic Solar cell, J. Phys. Chem. C. 115 (2011) 21517-21520. https://doi.org/10.1021/jp2063589
  11. S. H. Nho, G. L. Baek, S. J. Park, B. R. Lee, M. J. Cha, D. C. Lim, J. H. Seo, S. -H. Oh, M. H. Song, and S. U. Cho, Highly efficient inverted bulk-heterojunction solar cells with a gradiently doped ZnO layer, Energy Environ. Sci. 9 (2015) 240-246.
  12. H. P. Kim, A. Yusoff, H. J. Lee, S. J. Lee, H. M. Kim, G. J. Seo, J. H. Youn, and J. Jang, Effect of ZnO:$Cs_2CO_3$ on the performance of organic photovoltaics, Nanoscale Res. Lett. 9 (2014) 323. https://doi.org/10.1186/1556-276X-9-323
  13. S. H. Kim, J. H. Koh, X. Yang, W. S. Chi, C. H. Park, J. W. Leem, B. G. Kim, S. J. Seo, Y. N. Kim, J. S. Yu, J. H. Kim, and E. K. Kim, Enhanced Device Efficiency of Bilayered Inverted Organic Solar Cells Based on Photocurable P3HTs with a Light-Harvesting ZnO Nanorod Array, Adv. Energy Mater. 4 (2014) 1301338. https://doi.org/10.1002/aenm.201301338
  14. W. Wei, C. Zhang, D. Chen, Z. Wang, C. Zhu, J. Zhang, X. Lu, and Y. Hao, Efficient "Light-soaking"-free Inverted Organic Solar Cells with Aqueous Solution Processed Low-Temperature ZnO Electron Extraction Layers, ACS Appl. Mater. Interfaces. 5 (2013) 13318-13324. https://doi.org/10.1021/am404291p
  15. B. -Y. Oh, M. -C. Jeong, D. -S. Kim, W. lee, and J. -M. Myoung, Post-Annealing of Al-Doped ZnO Films in Hydrogen Atmosphere, J. Cryst. Growth. 281 (2005) 475-480. https://doi.org/10.1016/j.jcrysgro.2005.04.045
  16. H. Wang, S. H. Baek, J. J. Song, J. H. Lee, and S. W. Lim, Microstructural and optical characteristics of solution-grown Ga-doped ZnO nanorod arrays, Nanotechnology. 19 (2008) 075607. https://doi.org/10.1088/0957-4484/19/7/075607
  17. F. Paraguay D. J. Morales, W. Estrada L, E. Andrade, M. Miki-Yoshida, Influence of Al, In, Cu, Fe and Sn dopants in the microstructure of zinc oxide thin films obtained by spray pyrolysis, Thin Solid Films. 366 (2000) 16-27. https://doi.org/10.1016/S0040-6090(00)00752-5
  18. J. Hu, and R. G. Gordon, Textured fluorine-doped ZnO films by atmospheric pressure chemical vapor deposition and their use in amorphous silicon solar cells, Solar Cells. 30 (1991) 437-450. https://doi.org/10.1016/0379-6787(91)90076-2
  19. F. Wang, J. -H. Seo, Z. Li, A. V. Kvit, Z. Ma, and X. Wang, Cl-doped ZnO Nanowires with Metallic Conductivity and Their Application for High-Performance Photoelectrochemical Electrodes, ACS Appl. Mater. Interfaces. 6 (2014) 1288-1293. https://doi.org/10.1021/am405141s
  20. E. Chikoidze, M. Nolan, M. Modreanu, V. Sallet, and P. Galtier, Effect of chlorine doping on electrical and optical properties of ZnO thin films, Thin Solid Films. 516 (2008) 8146-8149. https://doi.org/10.1016/j.tsf.2008.04.076
  21. P. Cembrero-coca, M. Mollar, K. C. Singh, and B. Mari, Effective Electrochemical n-Type Doping of ZnO Thin films for Optoelectronic Window Applications, ECS J. Solid State Sci. 2 (2013) 108-112. https://doi.org/10.1149/2.023307jss
  22. J. Fan, F. Guell, C. Fabrega, A. Shavel, A. Carrete, T. Andreu, J. R. Morante, and A. Cabot, Enhancement of the photoelectrochemical properties of Cl-doped ZnO nanowires by tuning their coaxial doping profile, Appl. Phys. Lett. 99 (2011) 262102. https://doi.org/10.1063/1.3673287
  23. J. -C. Lee, N. G. Subramaniam, J. -W. Lee, J. -C. Lee, and T. -W. Kang, Evaluation of optimal chlorine doping concentration in zinc oxide on glass for application as new transparent conductive oxide, Phys. Status. Solidi. 210 (2013) 2638-2643. https://doi.org/10.1002/pssa.201330042
  24. J. Rousset, E. Saucedo, and D. Lincot, Extrinsic Doping of Electrodeposited Zinc Oxide Films by Chlorine for Transparent Conductive Oxide Application, Chem. Mater. 21 (2009) 534-540. https://doi.org/10.1021/cm802765c
  25. J. B. Cui, Y. C. Soo, and T. P. Chen, Low-Temperature Growth and Characterization of Cl-Doped ZnO Nanowires Array, J. Phys. Chem. C. 112 (2008) 4475-4479. https://doi.org/10.1021/jp710855z
  26. Y. -J. Choi, K. -M. Kang, H. -S. Lee, and H. -H. Park, Non-laminated growth of chlorine-doped zinc oxide films by atomic layer deposition at low temperatures, J. Mater. Chem. C. 3 (2015) 8336-8343. https://doi.org/10.1039/C5TC01763G
  27. J. C. Lee, E. J. Park, N. G. Subramaniam, J. E. Lee, J. W. Lee, J. C. Lee, and T. W. Kang, Non-metallic element (chlorine) doped Zinc oxide grown by pulsed laser deposition for application in transparent electrode, Curr. Appl. Phys. 12 (2012) S80-S84.
  28. T. Tchelidze, E. Chikoidze, O. Gorochov, and P. Galtier, Perspectives of chlorine doping of ZnO, Thin Solid Films. 515 (2007) 8744-8747. https://doi.org/10.1016/j.tsf.2007.04.003
  29. Y. Zhang, C. Liu, J. Liu, J. Xiong, J. Liu, K. Zhang, Y. Liu, M. Peng, A. Yu, A. Zhang, Y. Zhang, Z. Wang, J. Zhai, and Z. L. Wang, Lattice Strain Induced Remarkable Enhancement in Piezoelectric Performance of ZnO-Based Flexible Nanogenerators, ACS Appl. Mater. Interfaces. 8 (2016) 1381-1387. https://doi.org/10.1021/acsami.5b10345
  30. K. -D. Kim, D. C. Lim, H. O. Seo, J. Y. Lee, B. Y. Seo, D. J. Lee, Y. S. Song, S. U. Cho, J. -H. Lim, and Y. D. Kim, Enhanced performance of organic photovoltaics by $TiO_2$-interlayer with precisely controlled thickness between ZnO electron collecting and active layers, Appl. Surf. Sci. 279 (2013) 380-383. https://doi.org/10.1016/j.apsusc.2013.04.119
  31. K. -D Kim, D. C. Lim, J. H. Hu, J. -D. Kwon, M. -G. Jeong, H. O. Seo, J. Y. Lee, K. -Y. Jang, J. -H. Lim, K. H. Lee, Y. S. Jeong, Y. D. Kim, and S. U. Cho, Surface Modification of a ZnO Electron-Collecting Layer Using Atomic Layer Deposition to Fabricate High-Performing Inverted Organic Photovoltaics, ACS Appl. Mater. Interfaces. 5 (2013) 8718-8723. https://doi.org/10.1021/am402403x
  32. K. D. Girase, N. D. Girase, D. K. Sawant, H. M. Patil, D. S. Bhavsar, Influence of Zn(II) Doping on the Structural and Optical Properties of Gel Grown Lead Iodate Crystals, Adv. Appl. Sci. Res. 2 (2011) 233-239.
  33. K. -C. Choi, E. -J. Lee, Y. -K. Baek, D. C. Lim, Y. -C. Kang, Y. -D. Kim, K. H. Kim, J. P. Kim, and Y. -K. Kim, Morphologically controlled ZnO nanostructures as electron transport materials in polymer-based organic solar cells, Electrochim. Acta. 180 (2015) 435-441. https://doi.org/10.1016/j.electacta.2015.08.151
  34. J. -C. Lee, N. G. Subramaniam, J. -W. Lee, J. -C. Lee, and T. -W. Kang, Evaluation of optimal chlorine doping concentration in zinc oxide on glass for application as new transparent conductive oxide, Phys. Status. Solidi A 210, No.12 (2013) 2638-2643. https://doi.org/10.1002/pssa.201330042
  35. S. U. Cho, K. -D. Kim, J. H. Heo, J. Y. Lee, G. H. Cha, B. Y. Seo, Y. D. Kim, Y. S. Kim, S. -Y. Choi, and D. C. Lim, Role of additional PCBM layer between ZnO and photoactive layers in inverted bulk-heterojunction solar cells, Scientific reports, 4 (2014)