• Title/Summary/Keyword: Organic Transistor

Search Result 366, Processing Time 0.035 seconds

Voltage Feedback AMOLED Display Driving Circuit for Driving TFT Deviation Compensation (구동 TFT 편차 보상을 위한 전압 피드백 AMOLED 디스플레이 구동 회로)

  • Ki Sung Sohn;Yong Soo Cho;Sang Hee Son
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.161-165
    • /
    • 2023
  • This paper designed a voltage feedback driving circuit to compensate for the characteristic deviation of the Active Matrix Organic Light Emitting Diode driving Thin Film Transistor. This paper describes a stable and fast circuit by applying charge sharing and polar stabilization methods. A 12-inch Organic Light Emitting Diode with a Double Wide Ultra eXtended Graphics Array resolution creates a screen distortion problem for line parasitism, and charge sharing and polar stabilization structures were applied to solve the problem. By applying Charge Sharing, all data lines are shorted at the same time and quickly positioned as the average voltage to advance the compensated change time of the gate voltage in the next operation period. A buffer circuit and a current pass circuit were added to lower the Amplifier resistance connected to the line as a polar stabilization method. The advantage of suppressing the Ringing of the driving Thin Film Transistor can be obtained by increasing the stability. As a result, a circuit was designed to supply a stable current to the Organic Light Emitting Diode even if the characteristic deviation of the driving Thin Film Transistor occurs.

  • PDF

Organic field-effect transistors with step-edge structure

  • Kudo, Kazuhiro
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.91-93
    • /
    • 2008
  • The organic field-effect transistors with step-edge structure were fabricated. Source and drain electrodes were obliquely deposited by vacuum evaporation. The step-edge of the gate electrode serve as a shadow mask, and the short channel is formed at the step-edge. The excellent device performances were obtained.

  • PDF

Highly Crystalline 2,6,9,10-Tetrakis((4-hexylphenyl)ethynyl)anthracene for Efficient Solution-Processed Field-effect Transistors

  • Hur, Jung-A;Shin, Ji-Cheol;Lee, Tae-Wan;Kim, Kyung-Hwan;Cho, Min-Ju;Choi, Dong-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1653-1658
    • /
    • 2012
  • A new anthracene-containing conjugated molecule was synthesized through the Sonogashira coupling and reduction reactions. 1-Ethynyl-4-hexylbenzene was coupled to 2,6-bis((4-hexylphenyl) ethynyl)anthracene-9,10-dione through a reduction reaction to generate 2,6,9,10-tetrakis((4-hexylphenyl)ethynyl) anthracene. The semiconducting properties were evaluated in an organic thin film transistor (OTFT) and a single-crystal field-effect transistor (SC-FET). The OTFT showed a mobility of around 0.13 $cm^2\;V^{-1}\;s^{-1}$ ($I_{ON}/I_{OFF}$ > $10^6$), whereas the SC-FET showed a mobility of 1.00-1.35 $cm^2\;V^{-1}\;s^{-1}$, which is much higher than that of the OTFT. Owing to the high photoluminescence quantum yield of 2,6,9,10-tetrakis((4-hexylphenyl)ethynyl) anthracene, we could observe a significant increase in drain current under irradiation with visible light (${\lambda}$ = 538 nm, 12.5 ${\mu}W/cm^2$).

Bipolar Characteristics of Organic Field-effect Transistor Using F16CuPc with Active Layer ($F_{16}CuPC$를 활성층으로 사용한 유기전계효과트랜지스터의 바이폴라 특성연구)

  • Lee, Ho-Shik;Park, Young-Pil;Cheon, Min-Woo;Kim, Tae-Gon;Kim, Young-Phyo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.303-304
    • /
    • 2009
  • We fabricated organic field-effect transistors (OFETs) based a fluorinated copper phthalocyanine. ($F_{16}CuPc$) as an active layer. And we observed the surface morphology of the $F_{16}CuPc$ thin film. The $F_{16}CuPc$ thin film thickness was 40nm, and the channel length was $50{\mu}m$, channel width was 3mm. We observed the typical current-voltage (I-V) characteristics and capacitance-voltage (C-V) in $F_{16}CuPc$ FET and we calculated the effective mobility.

  • PDF

A Study on the Electrical Characteristics of Organic Thin Film Transistor using Photoacryl as Gate Dielectric Layer (Photoacryl을 게이트 절연층으로 사용한 유기 박막 트랜지스터의 전기적 특성에 관한 연구)

  • 김윤명;표상우;심재훈;김영관;김정수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.247-250
    • /
    • 2001
  • Organic semiconductors based on vacuum-deposited films of fused-ring polycyclic aromatic hydrocarbon have great potential to be utilized as an active layer for electronic and optoelectronic devices. We have fabricated organic thin film transistors(OTFTs) and discuss electrical characteristics of the devices. For the gate dielectric layer, OPTMER PC403 photoacryl(JSR Co.) was spin-coated and cured at 220$^{\circ}C$. Electrical characteristics of the device were investigated, where the photoacryl dielectric layer thickness and pentacene active layer thickness were about 0.6$\mu\textrm{m}$ and 800${\AA}$.

  • PDF

Development of the Printed Top Gate Organic Thin Film Transistor (OTFT)

  • Kang, H.S.;Kang, H.C.;Lee, M.H.;Park, S.Y.;Kim, M.J.;Heo, J.S.;Kim, D.W.;Noh, Y.H.;Lee, S.;Kim, J.Y.;Kim, C.D.;Kang, I.B.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.113-116
    • /
    • 2008
  • The active layer thickness and curing condition dependent performance of an organic thin film transistor (OTFT) with inkjetted organic semiconductor (OSC) layer is studied The best performance of the OTFT was found when the thickness of ose was ~120 nm cured at $60^{\circ}C$. The performance enhancement of the OTFT with inkjetted OSC layer was discussed by comparing the OTFT with spin-coated ose layer.

  • PDF

Backplane Technologies for Flexible Display (플렉시블 디스플레이 백플레인 기술)

  • Lee, Yong Uk
    • Vacuum Magazine
    • /
    • v.1 no.2
    • /
    • pp.24-29
    • /
    • 2014
  • Display is a key component in electronic devices. OLED is growing very fast recently due to the explosion of the smart phone market although still LCD is the dominating display technology in the display market at the moment. Also needs for the large area and high resolution TVs and flexible displays are increasing these days. Especially flexible display is expected to be one of the key technologies in mobile devices requiring small device size and large display size. Contrary to the conventional displays, flexible display requires organic materials for the substrate, the active driving element and also for the display element. Plastic film as a substrate, organic semiconductor as an active component of the transistor and organic light emitting materials or electronic paper as a display element are studied actively. In this article, mainly backplane technologies such as substrates and the transistor materials for flexible display will be introduced.

Growth of Rubrene Crystalline Wire via Solvent-vapor Annealing

  • Park, Ji-Hoon;Choi, Jeong-M.;Lee, Kwang-H.;Mun, Sung-Jin;Ko, G.;Im, Seong-Il
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.871-873
    • /
    • 2009
  • We report on the growth of rubrene ($C_{42}H_{28}$) wire fabricated by thermal evaporation, followed by solvent-vapor annealing for the application of organic thin film transistor. Solvent-vapor annealing was carried out in precisely controlled vapor pressure at elevated temperature. Micro-sized, and elongated rubrene wire was obtained via solvent annealing process reproducibly. Optical image and XRD data shows highly crystalline quality of rubrene wire.

  • PDF

Electrical Properties of CuPc FET with Different Substrate Temperature

  • Lee, Ho-Shik;Park, Yong-Pil;Cheon, Min-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.4
    • /
    • pp.170-173
    • /
    • 2007
  • Organic field-effect transistors (OFETs) are of interest for use in widely area electronic applications. We fabricated the organic field-effect transistor based a copper phthalocyanine (CuPc) as an active layer on the silicon substrate. The CuPc FET device was made a topcontact type and the substrate temperature was room temperature and $150^{\circ}C$. The CuPc thickness was 40 nm, and the channel length was $50{\mu}m$, channel width was 3 mm. We observed the typical current-voltage (I-V) characteristics and capacitance-voltage (C-V) in CuPc FET and we calculated the effective mobility with each device. Also, we observed the AFM images with different substrate temperature.