• Title/Summary/Keyword: Organic Trace Mineral

Search Result 32, Processing Time 0.024 seconds

The Effects of Replacing Inorganic with a Lower Level of Organically Complexed Minerals (Cu, Zn and Mn) in Broiler Diets on Lipid Peroxidation and Antioxidant Defense Systems

  • Aksu, Devrim Saripinar;Aksu, Taylan;Ozsoy, Bulent;Baytok, Erol
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.8
    • /
    • pp.1066-1072
    • /
    • 2010
  • In this study, the effects of replacing inorganic copper, zinc and manganese with different levels of organic complexes of the same trace minerals on the lipid peroxidation and antioxidant defense systems in broilers were investigated. Two-hundred Ross-308 one-day-old broiler chickens were placed on controlled diets until 42 d of age. The experimental animals were divided into four groups comprising three experimental groups and one control group, each consisting of 50 chickens. All groups were also divided into five subgroups each containing 10 broiler chicks. The mineral content of the control group diet was controlled using a standard inorganic mineral premix with supplement levels and sources of trace minerals typical of commercial broiler diets according to the National Research Council (NRC) (containing 8 mg Cu as $CuSO_4$, 40 mg Zn as $ZnSO_4$, and 60 mg Mn as MnO, per kg). In the experimental diets, mineral premix was also comprised of inorganic formulations, except for those of Cu, Zn and Mn. Organically-complexed Cu, Zn, and Mn were separately added to the basal diet at 1/3 (L1), 2/3 (L2) and 3/3 (L3) levels with respect to the NRC recommendation, as Bioplex $Cu^{TM}$, Bioplex $Zn^{TM}$, Bioplex $Mn^{TM}$. At the end of the trial, the plasma Zn level significantly increased when the plasma Cu level significantly decreased (p<0.05) in chickens fed at 2/3 and 3/3 levels of organically complexed minerals. The liver trace mineral concentrations were significantly higher in chickens fed inorganic trace minerals in comparison to those fed organically-complexed minerals. The plasma malondialdehyde (MDA) level of experimental chickens was decreased in groups receiving levels of organic Cu, Zn and Mn in comparison to those fed inorganic forms (p<0.01). The erythrocyte superoxide dismutase (SOD) activity was higher in all groups receiving the organic mineral supplements in comparison to those fed inorganic forms (p<0.01). No differences were observed on either the erythrocyte catalase (CAT) activity or the plasma ceruloplasmin (Cp) levels, and the liver MDA levels and liver CAT and SOD activities in any of the groups that received the organic supplements of Cu, Zn, and Mn. It was concluded that supplementation of lower levels of organically-complexed copper, zinc, and manganese instead of their inorganic forms in diets had no negative effects on the antioxidant defense system in broilers.

Evaluation of trace mineral source and preharvest deletion of trace minerals from finishing diets on tissue mineral status in pigs

  • Ma, Y.L.;Lindemann, M.D.;Webb, S.F.;Rentfrow, G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.2
    • /
    • pp.252-262
    • /
    • 2018
  • Objective: An experiment was conducted to evaluate dietary supplemental trace mineral source and deletion on mineral content in tissues. Methods: Weanling crossbred pigs (n = 144; 72 barrows and 72 gilts; body weight [BW] = $7.4{\pm}1.05kg$) were used. A basal diet was prepared, and trace mineral premix containing either inorganic (ITM) or organic (OTM) trace minerals (Cu, Fe, Mn, and Zn) was added to the basal diet. Pigs were blocked by sex and BW and randomly allotted to 24 pens for a total of 6 pigs per pen, and fed a diet containing either ITM or OTM supplemented at the 1998 NRC requirement estimates for each of 5 BW phases (Phase I to V) from 7 to 120 kg. The trace mineral supplementation was deleted for 6, 4, 2, and 0 wk of Phase V; regarding nutrient adequacy during this phase, the indigenous dietary Fe and Mn was sufficient, Cu was marginal and Zn was deficient. Results: At the end of Phase IV, Mn content (mg/kg on the dry matter basis) was greater (p<0.05) in heart (0.77 vs 0.68), kidney (6.32 vs 5.87), liver (9.46 vs 8.30), and longissimus dorsi (LD; 0.30 vs 0.23) of pigs fed OTM. The pigs fed OTM were greater (p<0.05) in LD Cu (2.12 vs 1.89) and Fe (21.75 vs 19.40) and metacarpal bone Zn (141.86 vs 130.05). At the end of Phase V, increased length of deletion period (from 0 to 6 wk) resulted in a decrease (linear, p<0.01) in liver Zn (196.5 to 121.8), metacarpal bone Zn (146.6 to 86.2) and an increase (linear, p<0.01) in heart Mn (0.70 to 1.08), liver Mn (7.74 to 12.96), and kidney Mn (5.58 to 7.56). The only mineral source by deletion period interaction (p<0.05) was observed in LD Zn. Conclusion: The results demonstrated differential effects of mineral deletion on tissue mineral content depending on both mineral assessed and source of the mineral.

Influence of dietary organic trace minerals on enteric methane emissions and rumen microbiota of heat-stressed dairy steers

  • A-Rang Son;Mahfuzul Islam;Seon-Ho Kim;Sung-Sill Lee;Sang-Suk Lee
    • Journal of Animal Science and Technology
    • /
    • v.65 no.1
    • /
    • pp.132-148
    • /
    • 2023
  • Ruminants are the main contributors to methane (CH4), a greenhouse gas emitted by livestock, which leads to global warming. In addition, animals experience heat stress (HS) when exposed to high ambient temperatures. Organic trace minerals are commonly used to prevent the adverse effects of HS in ruminants; however, little is known about the role of these minerals in reducing enteric methane emissions. Hence, this study aimed to investigate the influence of dietary organic trace minerals on rumen fermentation characteristics, enteric methane emissions, and the composition of rumen bacteria and methanogens in heat-stressed dairy steers. Holstein (n=3) and Jersey (n=3) steers were kept separately within a 3×3 Latin square design, and the animals were exposed to HS conditions (Temperature-Humidity Index [THI], 82.79 ± 1.10). For each experiment, the treatments included a Control (Con) consisting of only basal total mixed rations (TMR), National Research Council (NRC) recommended mineral supplementation group (NM; TMR + [Se 0.1 ppm + Zn 30 ppm + Cu 10 ppm]/kg dry matter), and higher concentration of mineral supplementation group (HM; basal TMR + [Se 3.5 ppm + Zn 350 ppm + Cu 28 ppm]/kg dry matter). Higher concentrations of trace mineral supplementation had no influence on methane emissions and rumen bacterial and methanogen communities regardless of breed (p > 0.05). Holstein steers had higher ruminal pH and lower total volatile fatty acid (VFA) concentrations than Jersey steers (p < 0.05). Methane production (g/d) and yield (g/kg dry matter intake) were higher in Jersey steers than in Holstein steers (p < 0.05). The relative abundances of Methanosarcina and Methanobrevibacter olleyae were significantly higher in Holstein steers than in Jersey steers (p < 0.05). Overall, dietary organic trace minerals have no influence on enteric methane emissions in heat-stressed dairy steers; however, breed can influence it through selective alteration of the rumen methanogen community.

In-feed organic and inorganic manganese supplementation on broiler performance and physiological responses

  • de Carvalho, Bruno Reis;Ferreira Junior, Helvio da Cruz;Viana, Gabriel da Silva;Alves, Warley Junior;Muniz, Jorge Cunha Lima;Rostagno, Horacio Santiago;Pettigrew, James Eugene;Hannas, Melissa Izabel
    • Animal Bioscience
    • /
    • v.34 no.11
    • /
    • pp.1811-1821
    • /
    • 2021
  • Objective: A trial was conducted to investigate the effects of supplemental levels of Mn provided by organic and inorganic trace mineral supplements on growth, tissue mineralization, mineral balance, and antioxidant status of growing broiler chicks. Methods: A total of 500 male chicks (8-d-old) were used in 10-day feeding trial, with 10 treatments and 10 replicates of 5 chicks per treatment. A 2×5 factorial design was used where supplemental Mn levels (0, 25, 50, 75, and 100 mg Mn/kg diet) were provided as MnSO4·H2O or MnPro. When Mn was supplied as MnPro, supplements of zinc, copper, iron, and selenium were supplied as organic minerals, whereas in MnSO4·H2O supplemented diets, inorganic salts were used as sources of other trace minerals. Performance data were fitted to a linearbroken line regression model to estimate the optimal supplemental Mn levels. Results: Manganese supplementation improved body weight, average daily gain (ADG) and feed conversion ratio (FCR) compared with chicks fed diets not supplemented with Mn. Manganese in liver, breast muscle, and tibia were greatest at 50, 75, and 100 mg supplemental Mn/kg diet, respectively. Higher activities of glutathione peroxidase and superoxide dismutase (total-SOD) were found in both liver and breast muscle of chicks fed diets supplemented with inorganic minerals. In chicks fed MnSO4·H2O, ADG, FCR, Mn balance, and concentration in liver were optimized at 59.8, 74.3, 20.6, and 43.1 mg supplemental Mn/kg diet, respectively. In MnPro fed chicks, ADG, FCR, Mn balance, and concentration in liver and breast were optimized at 20.6, 38.0, 16.6, 33.5, and 62.3 mg supplemental Mn/kg, respectively. Conclusion: Lower levels of organic Mn were required by growing chicks for performance optimization compared to inorganic Mn. Based on the FCR, the ideal supplemental levels of organic and inorganic Mn in chick feeds were 38.0 and 74.3 mg Mn/kg diet, respectively.

Studies on the Mineral Content of Edible Mushrooms (식용 버섯류의 무기물 함량)

  • 허윤행;김옥경
    • Journal of Environmental Health Sciences
    • /
    • v.17 no.1
    • /
    • pp.129-135
    • /
    • 1991
  • To investigate on the trace element content of twelve edible mushrooms and Aloe arborescens, i. e., Lentinus edodes, Ganoderma lucidum (culturing in wood and soil), Tricholoma matsutake, Agaricus bisporus, Cyrophora esculenta, Auricularia auricula-Jude (produced in Korea and China), Sarcodon asparatus, Pleurotus ostreatus, Coriolus versicolor, Smilax rotundifolia and Aloe arborescerts were analyzed by Atomic absorption spectrometer. The obtained results were summerized as follows: 1. Potassium, sodium, magnesium and iron content for the most part samples were in large quantities, especially phosphorus content of those was highest ammount for the all samples. 2. Sodium content was much ammount in the Lentinus edodes (39mg) and Ganoderma lucidurn (20 mg), Culturing in wood and soil, while potassium was very high ammount in the Aloe arborescens and other samples. Mush ammount of magnesium as compared with others was Lentinus edodes (144mg), Ganoderma lucidurn (128mg), Aloe arborescerts (50mg) and pleurotus ostreatus (60mg). Phosphorus content of Ganoderma lucidurn, Lentinus edodes, Gyrophora esculenta, Auricularia polytricha and Agaricus bisporus was much ammount while iron content of all samples equality higher ammount. Sodium content of Aloe arborescens was not analyzed out for almost all, its potassium (82mg), magnesium (50mg) and iron (18rng) content comparatively higher quentity than others minerals and phosphorus volume (4.9mg) as compared with others, was conspicuously lower detect. 4. Cadimium and lead content of harmful metal element were detected on trace quentity for the most part samples 5. Organic acids of samples i.e., Legtinus edodes, Agaricus bisporus, Pleurotus ostreatus and Ganoderma lucidum were Citrate, Malate, Fumalate, Succinate, Oxalate, Acetate, Lactate, and Tartarate and Citrate, Malate and Fumarate contents were higher amount remarkbly than other organic acids. Tartarate content was trace amount.

  • PDF

Possibilities for Reduction and the Emissions of Trace Gases from Livestock System (축산에서 기후변동 관련 기체의 발생원과 방지대책)

  • 류종원
    • Journal of Animal Environmental Science
    • /
    • v.4 no.1
    • /
    • pp.37-45
    • /
    • 1998
  • There are a lot of trace gas of gaseous pollutants produced from farm animals. CO2 and CH4 are gases produced directly by the animal. NH3, N2O are produced from animal waste. Most of the effects of these gaseous pollutants on the farm animals have not been investigated in detail. CO2 emission from animal is very little. CH4 release from ruminant is also considered to be a significant factor in potential global warming. Nitrous oxide (N2O) emissions could be avoided by using organic or mineral fertilizer only as much as is needed by plant growing. This paper gives an overview about problems and solving strategies for possibilities for reduction of gaseous pollutants. The way to reduce the gaseous pollution risks from livestock systems are discussed.

Effects of Asian Dust (KOSA) Deposition Event on Bacterial and Microalgal Communities in the Pacific Ocean

  • Maki, Teruya;Ishikawa, Akira;Kobayashi, Fumihisa;Kakikawa, Makiko;Aoki, Kazuma;Mastunaga, Tomoki;Hasegawa, Hiroshi;Iwasaka, Yasunobu
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.3
    • /
    • pp.157-163
    • /
    • 2011
  • Atmospheric aerosol deposition caused by Asian dust (KOSA) events provide nutrients, trace metals, and organic compounds over the Pacific Ocean that enhance ocean productivity and carbon sequestration and, thus, influence the atmospheric carbon dioxide concentrations and climate. Using dust particles obtained from the snow layers on Mt. Tateyama and the surface sand of Loess Plateau in incubation experiments with natural seawater samples on a shipboard, we demonstrate that dust-particle additions enhanced the bacterial growth on the first day of incubation. Gram-positive bacterial group and alpha-proteobacteria were specifically detected form seawater samples including the mineral particles. Although the remarkable dynamics of trace elements and nutrients depend on dust-particle additions, it is possible that organic compounds present in the mineral particles or transported microbial cells could also contribute to an increase in the quantities of bacteria. The chlorophyll concentrations at fractions of every size indicated a similar pattern of change between the seawater samples with and without the dust-particle additions. In contrast, the chlorophyll measurement using submersible fluorometer revealed that the dynamics of phytoplankton composition were influenced by the dust-particles treatments. We conclude that the phytoplankton that uses the bacterial products would increase their biomass. We show that KOSA deposition can potentially alter the structures of bacterial communities and indirectly influence the patterns of marine primary production in the Pacific Ocean.

EFFECTS OF DIETARY SILICIC ACID AND CADMIUM ON SHORT-TERM MINERAL BALANCES IN SHEEP

  • Bruce, L.B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.2 no.4
    • /
    • pp.579-582
    • /
    • 1989
  • Previous experiments have shown that aqueous sodium silicate ingested in drinking water may modify the gastrointestinal uptake and(or) tissue retention of certain trace elements, including heavy metals. The present experiment tested, with a mineral balance trial using sheep, the hypothesis that dietary silicic acid could modify uptake, retention and(or) biological effects of dietary Cd. Twenty-four wethers were fed a fibrous diet of ground alfalfa hay and cottonseed hulls to which either 0 or 150 ppm Cd was added as $CdCl_2$ and 0, .5 or 1% silicic acid (as dry matter of the diet). Body weight, feed intake, excretion of urine (volume) and feces (weight), digestibility of dry and organic matter, retention of nitrogen, and packed cell volumes of blood were not affected by either Cd or silicic acid (P<.10). Cadmium decreased (P<.05) Ca retention and increased (P<.01) Mg retention. Silicic acid decreased (P<.05) K retention. Silicic acid failed (P<.01) to modify the retention of added dietary Cd. Body retention of K, Mn and Ni in response to silicic acid varied with Cd levels. If Cd is interfering with mineral retention, silicic acid may be effective in preventing this interference.

Trace Metal Contamination and Solid Phase Partitioning of Metals in National Roadside Sediments Within the Watershed of Hoidong Reservoir in Pusan City (부산시 회동저수지 집수분지 내 국도도로변 퇴적물의 미량원소 오염 및 존재형태)

  • Lee Pyeong-Koo;Kang Min-Joo;Youm Seung-Jun;Lee In-Gyeong;Park Sung-Won;Lee Wook-Jong
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.5
    • /
    • pp.20-34
    • /
    • 2006
  • This study was undertaken to assess the anthropogenic impact on trace metal concentrations (Zn, Cu, Pb, Cr, Ni, and Cd) of roadside sediments (N = 70) from No.7 national road within the watershed of Hoidong Reservoir in Pusan City and to estimate the potential mobility of selected metals using sequential extraction. We generally found high concentrations of metals, especially Zn, Cu and Pb, affected by anthropogenic inputs. Compared to the trace metal concentrations of uncontaminated stream sediments, arithmetic mean concentrations of roadside sediments were about 7 times higher for Cu, 4 times higher for Zn, 3 times higher for Pb and Cr and, 2 times higher for Ni and As. Speciation data on the basis of sequential extraction indicate that most of the trace metals considered do not occur in significant quantities in the exchangeable fraction, except for Cd and Ni whose exchangeable fractions are appreciable (average 29.3 and 25.8%, respectively). Other metals such as Zn (51.4%) and Pb (45.2%) are preferentially bound to the reducible fraction, and therefore they can be potentially released by a pH decrease and/or redox change. Copper is mainly found in the organic fraction, while Cd is highest in the exchangeable fraction, and Cr and Ni in the residual fraction. Considering the proportion of metals bound to the exchangeable and carbonate fractions, the comparative mobility of metals probably decreases in the order of Cd>Ni>Pb>Zn>Cr>Cu. Although the total concentration data showed that Zn was typically present in potentially harmful concentration levels, the data on metal partitioning indicated that Cd, Ni and Pb pose the highest potential hazard for runoff water. As potential changes of redox state and pH may remobilize the metals bound to carbonates, amorphous oxides, and/or organic matter, and may release and flush them through drain networks into the watershed of Hoidong Reservoir, careful monitoring of environmental conditions appears to be very important.

Biological Aspects of Selenium in Farm Animals

  • Kim, Y.Y.;Mahan, D.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.3
    • /
    • pp.435-444
    • /
    • 2003
  • In 1957, Schwarz and Foltz discovered that selenium (Se) was an essential trace mineral and nutritionists then started extensive studies to figure out the metabolic function of this element which has been called as toxic mineral. The discovery that glutathione peroxidase (GSH-Px) contained Se demonstrated a biochemical role for Se as an essential trace element. The major physiological function of Se containing GSH-Px is thought to maintain low levels of $H_2O_2$ and other hydroperoxides in the cell to prevent tissues from peroxidation damages. It is known that the GSH-Px activity is increased when animals were fed high dietary levels of Se. Chemical properties of Se have much in common with sulfur (S) therefore Se would follow the sulfur pathways in its metabolism in animal body. Two sources of Se are available for supplementation of Se in animal feed. Inorganic Se can also exist in selenide (-2), elemental (0), selenite (+4) and selenate (+6) oxidation state with other minerals. When sulfur in S containing amino acids is replaced by Se, organic Se can be made and named "eleno"prior to the name of S containing amino acid, i.e. selenomethionine. Selenium deficiency affects humans as well as animals and dysfunctions such as exudative diathesis, retained placenta, mastitis, liver necrosis, Keshan disease, numerous diseases and cancer. From several centuries ago, Se toxicity was recognized in various animal species and much of the current toxic Se levels has been established largely based upon the controlled toxicity studies used inorganic Se. Toxic effects of Se in animal result in reduced feed intake, growth retardation, ataxia, diarrhea, alopecia and sloughing of hooves. However, several experiments demonstrated that Se deficiencies or toxicities were varied by dietary Se levels and sources. Recent studies demonstrated that the incidence of colorectal and prostate cancer was reduced by approximately 50% when humans consumed 200 ${\mu}g$ of Se daily.