• Title/Summary/Keyword: Organic Thin-Film Transistor

Search Result 285, Processing Time 0.03 seconds

Fabrication of Flexible Inorganic/Organic Hybrid Thin-Film Transistors by All Ink-Jet Printed Components on Plastic Substrate

  • Kim, Dong-Jo;Lee, Seong-Hui;Moon, Joo-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1463-1465
    • /
    • 2008
  • We report all-ink-jet printed inorganic/organic hybrid TFTs on plastic substrates. We have investigated the optimal printing conditions to make uniform patterned layers of gate electrode, dielectrics, source/drain electrodes, and semiconductor as a coplanar type TFT in a successive manner. All ink-jet printed devices have good mechanical flexibility and current modulation characteristic even when bent.

  • PDF

Pressure Control Organic Vapor Deposition Methods for Fabricating Organic Thin-Film Transistors

  • Ahn, SeongDeok;Kang, Seong Youl;Oh, Ji Young;Suh, Kyung Soo;Cho, Kyoung Ik;Koo, Jae Bon
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.970-973
    • /
    • 2012
  • In this letter, we report on the development progress of a pressure control organic vapor deposition (PCOVD) technology used to design and build a large area deposition system. We also investigate the growth characteristics of a pentacene thin film by PCOVD. Using the PCOVD method, the mobility and on/off current ratio of an organic thin-film transistor (OTFT) on a plastic substrate are $0.1cm^2/Vs$ and $10^6$, respectively. The developed OTFT can be applied to a flexible display on a plastic substrate.

Fabrication of Screen Printed Organic Thin-Film Transistors

  • Yu, Jong-Su;Jo, Jeong-Dai;Kim, Do-Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.629-632
    • /
    • 2008
  • Printed organic thin-film transistors (OTFTs) were used in the fabrication of a screen- printed gate, source and drain electrodes on flexible plastic substrates using silver pastes, a coated polyvinylphenol dielectrics, and jetted bis(triisopropyl-silylethynyl) pentacene (TIPS-pentacene) organic semiconductor. The OTFTs printed using screen printing and soluble processes made it was possible to fabricate a printed OTFT with a channel length as small as $13\;{\mu}m$ on plastic substrates; this was not possible using previous traditional printing techniques.

  • PDF

Silicon Thin-Film Transistors on Flexible Polymer Foil Substrates

  • Cheng, I-Chun;Chen, Jian Z.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1455-1458
    • /
    • 2008
  • Amorphous silicon (a-Si:H) thin-film transistors (TFTs) are fabricated on flexible organic polymer foil substrates. As-fabricated performance, electrical bias-stability at elevated temperatures, electrical response under mechanical flexing, and prolonged mechanical stability of the TFTs are studied. TFTs made on plastic at ultra low process temperatures of $150^{\circ}C$ show initial electrical performance like TFTs made on glass but large gate-bias stress instability. An abnormal saturation of the instability against operation temperature is observed.

  • PDF

Fabrication of Organic Thin-Film Transistor Using Vapor Deposition Polymerization Method (Vapor Deposition Polymerization 방법을 이용한 유기 박막 트렌지스터의 제작)

  • 표상우;김준호;김정수;심재훈;김영관
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.190-193
    • /
    • 2002
  • The processing technology of organic thin-film transistors (Ons) performances have improved fur the last decade. Gate insulator layer has generally used inorganic layer, such as silicon oxide which has properties of a low electrical conductivity and a high breakdown field. However, inorganic insulating layers, which are formed at high temperature, may affect other layers termed on a substrate through preceding processes. On the other hand, organic insulating layers, which are formed at low temperature, dose not affect pre-process. Known wet-processing methods for fabricating organic insulating layers include a spin coating, dipping and Langmuir-Blodgett film processes. In this paper, we propose the new dry-processing method of organic gate dielectric film in field-effect transistors. Vapor deposition polymerization (VDP) that is mainly used to the conducting polymers is introduced to form the gate dielectric. This method is appropriate to mass production in various end-user applications, for example, flat panel displays, because it has the advantages of shadow mask patterning and in-situ dry process with flexible low-cost large area displays. Also we fabricated four by four active pixels with all-organic thin-film transistors and phosphorescent organic light emitting devices.

  • PDF

Effects of Alternating Magnetic Field Assisted Annealing of Pentacene Film for Organic Thin Film Transistor Applications

  • Park, Jae-Hoon;Choi, Jong-Sun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.1
    • /
    • pp.32-35
    • /
    • 2007
  • In this article, a novel annealing technique using alternating magnetic field (AMF) is adopted to improve the electrical characteristics of pentacene film, thereby enhancing the performance of pentacene-based organic thin film transistors (OTFTs). According to the investigation results, the electrical conductivity in the pentacene film could be increased from 0.32 to 1.18 S/cm by annealing the pentacene film using AMF. And also, OTFTs with the pentacene film annealed by AMF exhibited an improved performance compared to the device without annealing. These results suggest that an annealing using AMF can be an effective method to improve the performance of devices based on organic semiconductors.

Fabrication of Pentacene Thin Film Transistors and Their Electrical Characteristics (Pentacene 박막트랜지스터의 제조와 전기적 특성)

  • 김대엽;최종선;강도열;신동명;김영환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.598-601
    • /
    • 1999
  • There is currently considerable interest in the applications of conjugated polymers, oligomers and small molecules for thin-film electronic devices. Organic materials have potential advantages to be utilized as semiconductors in field effect transistor and light emitting didoes. In this study, Pentacene thin film transistors(TFTs) were fabricated on glass substrate. Aluminum and Gold wei\ulcorner used fur the gate and source/drain electrodes. Silicon dioxde was deposited as a gate insulator by PECVD and patterned by R.I.E. The semiconductor layer of pentacene was thermally evaporated in vaccum at a pressure of about 10$^{-8}$ Torr and a deposition rate 0.3$\AA$/sec. The fabricated devices exhibited the field-effect mobility as large as 0.07cm$^2$/Vs and on/off current ratio larger than 10$^{7}$

  • PDF

Highly Crystalline 2,6,9,10-Tetrakis((4-hexylphenyl)ethynyl)anthracene for Efficient Solution-Processed Field-effect Transistors

  • Hur, Jung-A;Shin, Ji-Cheol;Lee, Tae-Wan;Kim, Kyung-Hwan;Cho, Min-Ju;Choi, Dong-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1653-1658
    • /
    • 2012
  • A new anthracene-containing conjugated molecule was synthesized through the Sonogashira coupling and reduction reactions. 1-Ethynyl-4-hexylbenzene was coupled to 2,6-bis((4-hexylphenyl) ethynyl)anthracene-9,10-dione through a reduction reaction to generate 2,6,9,10-tetrakis((4-hexylphenyl)ethynyl) anthracene. The semiconducting properties were evaluated in an organic thin film transistor (OTFT) and a single-crystal field-effect transistor (SC-FET). The OTFT showed a mobility of around 0.13 $cm^2\;V^{-1}\;s^{-1}$ ($I_{ON}/I_{OFF}$ > $10^6$), whereas the SC-FET showed a mobility of 1.00-1.35 $cm^2\;V^{-1}\;s^{-1}$, which is much higher than that of the OTFT. Owing to the high photoluminescence quantum yield of 2,6,9,10-tetrakis((4-hexylphenyl)ethynyl) anthracene, we could observe a significant increase in drain current under irradiation with visible light (${\lambda}$ = 538 nm, 12.5 ${\mu}W/cm^2$).

Electrical Characteristics of Organic Thin-film Transistors with Polyvinylpyrrolidone as a Gate Insulator

  • Choi, Jong-Sun
    • Journal of Information Display
    • /
    • v.9 no.4
    • /
    • pp.35-38
    • /
    • 2008
  • This paper reports the electrical characteristics of polyvinylpyrrolidone (PVPy) and the performance of organic thin-film transistors (OTFTs) with PVPy as a gate insulator. PVPy shows a dielectric constant of about 3 and contributes to the upright growth of pentacene molecules with $15.3\AA$ interplanar spacing. OTFT with PVPy exhibited a field-effect mobility of 0.23 $cm^2$/Vs in the saturation regime and a threshold voltage of -12.7 V. It is notable that there was hardly any threshold voltage shift in the gate voltage sweep direction. Based on this reliable evidence, PVPy is proposed as a new gate insulator for reliable and high-performance OTFTs.

Low-voltage Organic Thin-film Transistors with Polymeric High-k Gate Insulator on a Flexible Substrates (고유전율 절연체를 활용한 저 전압 유연 유기물 박막 트랜지스터)

  • Kim, Jae-Hyun;Bae, Jin-Hyuk;Lee, In-ho;Kim, Min-Hoi
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.165-168
    • /
    • 2015
  • We demonstrated low-voltage organic thin-film transistors (OTFTs) with bilayer insulators, high-k polymer and low temperature crosslinkable polymer, on a flexible plastic substrate. Poly (vinylidene fluoridetrifluoroethylene) (P(VDF-TrFE)) and poly (2-vinylnaphthalene) are used for high-k polymer gate insulator and low temperature crosslinkable polymer insulators, respectively. The mobility of flexible OTFTs is $0.17cm^2/Vs$ at gate voltages -5 V after bending operation.