• Title/Summary/Keyword: Organic Thin Film Transistor

Search Result 285, Processing Time 0.03 seconds

One step facile synthesis of Au nanoparticle-cyclized polyacrylonitrile composite films and their use in organic nano-floating gate memory applications

  • Jang, Seok-Jae;Jo, Se-Bin;Jo, Hae-Na;Lee, Sang-A;Bae, Su-Gang;Lee, Sang-Hyeon;Hwang, Jun-Yeon;Jo, Han-Ik;Wang, Geon-Uk;Kim, Tae-Uk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.307.2-307.2
    • /
    • 2016
  • In this study, we synthesized Au nanoparticles (AuNPs) in polyacrylonitrile (PAN) thin films using a simple annealing process in the solid phase. The synthetic conditions were systematically controlled and optimized by varying the concentration of the Au salt solution and the annealing temperature. X-ray photoelectron spectroscopy (XPS) confirmed their chemical state, and transmission electron microscopy (TEM) verified the successful synthesis, size, and density of AuNPs. Au nanoparticles were generated from the thermal decomposition of the Au salt and stabilized during the cyclization of the PAN matrix. For actual device applications, previous synthetic techniques have required the synthesis of AuNPs in a liquid phase and an additional process to form the thin film layer, such as spin-coating, dip-coating, Langmuir-Blodgett, or high vacuum deposition. In contrast, our one-step synthesis could produce gold nanoparticles from the Au salt contained in a solid matrix with an easy heat treatment. The PAN:AuNPs composite was used as the charge trap layer of an organic nano-floating gate memory (ONFGM). The memory devices exhibited a high on/off ratio (over $10^6$), large hysteresis windows (76.7 V), and a stable endurance performance (>3000 cycles), indicating that our stabilized PAN:AuNPs composite film is a potential charge trap medium for next generation organic nano-floating gate memory transistors.

  • PDF

The performance of the Co gate electrode formed by using selectively chemical vapor deposition coupled with micro-contact printing

  • Yang, Hee-Jung;Lee, Hyun-Min;Lee, Jae-Gab
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1119-1122
    • /
    • 2005
  • A selective deposition of Co thin films for thin film transistor gate electrode has been carried out by the growth with combination of micro-contact printing and metal organic chemical vapor deposition (MOCVD). This results in the elimination of optical lithography process. MOCVD has been employed to selectively deposit Co films on preformed OTS gate pattern by using micro-contact printing (${\mu}CP$). A hydrogenated amorphous silicon TFT with a Co gate selectively formed on SAMs patterned structure exhibited a subthreshold slope of 0.88V/dec, and mobility of $0.35cm^2/V-s$, on/off current ratio of $10^6$, and a threshold voltage of 2.5V, and thus demonstrating the successful application of the novel bottom-up approach into the fabrication of a-Si:H TFTs.

  • PDF

A Study on the Leakage Current Voltage of Hybrid Type Thin Films Using a Dilute OTS Solution

  • Kim Hong-Bae;Oh Teresa
    • Journal of the Semiconductor & Display Technology
    • /
    • v.5 no.1 s.14
    • /
    • pp.21-25
    • /
    • 2006
  • To improve the performance of organic thin film transistor, we investigated the properties of gate insulator's surface according to the leakage current by I-V measurement. The surface was treated by the dilute n-octadecyltrichlorosilane solution. The alkyl group of n-octadecyltrichlorosilane induced the electron tunneling and the electron tunneling current caused the breakdown at high electric field, consequently shifting the breakdown voltage. The 0.5% sample with an electron-rich group was found to have a large leakage current and a low barrier height because of the effect of an energy barrier lowered by, thermionic current, which is called the Schottky contact. The surface properties of the insulator were analyzed by I-V measurement using the effect of Poole-Frankel emission.

  • PDF

High Performance Bottom Contact Organic TFTs on Plastic for Flexible AMLCD

  • Kim, Sung-Hwan;Choi, Hye-Young;Han, Seung-Hoon;Jang, Jin;Cho, Sang-Mi;Oh, Myung-Hwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.889-892
    • /
    • 2004
  • We developed a high performance bottom contact, organic thin-film transistor (OTFT) array on plastic using a self-organized process. The effect of OTS treatment on the PVP gate insulator for the performance of OTFT on plastic has been studied The OTFT without OTS exhibited a field-effect mobility of 0.1 $cm^2$/Vs on/off current ratio of > $10^7$. On the other hand, OTFT with OTS, exhibited a field-effect mobility of 1.3 $cm^2$/Vs and on/off current ratio of>$10^8$.

  • PDF

A Study of Soluble Pentacene Films for Organic Transistors (유기 트랜지스터 제작을 위한 Soluble Pentacene 박막의 특성연구)

  • Lim, Hun-Seong;Gong, Su-Cheol;Shin, Ik-Sub;Chang, Ho-Jung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2007.05a
    • /
    • pp.136-138
    • /
    • 2007
  • 본 연구에서는 유기박막트랜지스터 (OTFT, Organic Thin film Transistor) 제작을 위한 채널막으로 pentacene의 soluble 공정 과 soluble 공정 올 통하여 제작된 pentacene 박막의 특성 을 분석 하여 유기박막트랜지스터에 적용 여부를 조사하였다. Pentacene을 용해시키기 위한 용제로는 toluene과 chloroform을 사용하였으며, 각각의 용제에 대하여 열처리를 하여 pentacene 용액을 준비하였다. Spin-coating 법으로 pentacene 유기 박막을 제작하여 각 박막의 결정화 특성을 관찰하였다. XRD 회절 분석 결과 chloroform 올 이용한 pentacene 박막에서만 결정화가 된 것이 확인이 되었다. Hall effect measurement 분석 결과 chloroform올 이 용한, pentacene 박막의 전하농도 (Carrier Concentration)는 $-3.225{\times}1014(c{\cdot}cm^{-3})$를 나타내었고, 이동도 (Mobility)는 $3.5{\times}10^{-l}(cm^2{\cdot}V^{-1}{\cdot}S^{-1})$를 각각 나타내었다.

  • PDF

Organic Electronics, Organic Thin-Film Transistor (유기 전자소자, OTFT)

  • Kim, S.H.;Lee, J.H;Lim, S.C.;Ku, J.B.;Ku, C.H.;Sung, G.Y.;Zyung, T.H.
    • Electronics and Telecommunications Trends
    • /
    • v.20 no.5 s.95
    • /
    • pp.56-69
    • /
    • 2005
  • 유기물이 반도체 성질을 가질 수 있다는 것이 밝혀지면서 많은 여러 가지 응용분야에 많은 연구가 진행되어 왔다. 유기 반도체는 무기 반도체와 다르게 적절한 용매에 녹는다는 장점이 있다. 이 장점을 활용해 소자 제작에 직접 인쇄법인 그래픽 인쇄 방식을 사용할 수 있다. 본 기고문에서는 유기 반도체의 여러 응용 분야 중 직접 인쇄법으로 제작한 유기 전계효과 트랜지스터(OTFT)를 중심으로 기술 발전 방향과 연구 동향, 대표적 벤처 기업 등에 관하여 기술하였다.

Improving performance of organic thin film transistor using an injection layer

  • Park, K.M.;Lee, C.H.;Hwang, D.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1413-1415
    • /
    • 2005
  • The OTFT performance depends strongly on the interfacial properties between an organic semiconductor and ${\alpha}$ metal electrode. The contact resistance is critical to the current flow in the device. The contact resistance arises mainly from the Schottky barrier formation due to the work function difference between the semiconductor and electrodes. We doped pentacene/source-drain interfaces with $F_4TCNQ$ (2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane), resulting in p-doped region at the SD contacts, in order to solve this problem. We found that the mobility increased and the threshold voltage decreased.

  • PDF

Laser Microfabrications for Next-Generation Flat Panel Display (레이저를 이용한 차세대 평판 디스플레이 공정)

  • Kim, Kwang-Ryul
    • Korean Journal of Materials Research
    • /
    • v.17 no.7
    • /
    • pp.352-357
    • /
    • 2007
  • Since a pattern defects "repair" system using a diode pumped solid state laser for Flat Panel Display (FPD) was suggested, a lot of laser systems have been explored and developed for mass-production microfabrication process. A maskless lithography system using 405 nm violet laser and Digital Micromirror Device (DMD) has been developed for PDP and Liquid Crystal Display (LCD) Thin Film Transistor (TFT) photolithography process. In addition, a "Laser Direct Patterning" system for Indium Tin Oxide (ITO) for Plasma Display Panel(PDP) has been evaluated one of the best successful examples for laser application system which is applied for mass-production lines. The "heat" and "solvent" free laser microfabrications process will be widely used because the next-generation flat panel displays, Flexible Display and Organic Light Emitting Diode (OLED) should use plastic substrates and organic materials which are very difficult to process using traditional fabrication methods.

A Charge-Pump Passive-Matrix Pixel Driver for Organic Light Emitting Diodes

  • Seo, Jong-Wook;Kim, Han-Byul;Kim, Bong-Ok;Kim, Young-Kwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.108-112
    • /
    • 2002
  • A new pixel driving method for organic light-emitting diode (OLED) flat-panel display (FPD) is proposed. The new charge-pump passive-matrix pixel driver consists only of a storage capacitance and a rectifying diode, and no thin-film transistor (TFT) is needed. The new driver not only supplies a constant current to the OLED throughout the whole period of panel scanning like an active-matrix driver, but also provides a highly linear gray-scale control through a pure digital manner.

  • PDF

Organic Field Effect Transistor Based Memory Device With Plasma Polymerized Styrene Thin Film as Polymer Electret

  • Kim, Hui-Seong;Lee, Bung-Ju;Jeong, Geon-Su;Sin, Baek-Gyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.195.2-195.2
    • /
    • 2013
  • 플라즈마 중합 증착기술을 이용하여 ppMMA (plasma polymerized methyl methacrylate) 및 ppS (plasma polymerized styrene) 박막을 제작하고, ppMMA를 게이트 절연층, polymer electret인 ppS를 메모리층으로 한 전계효과트랜지스터 기반 유기 메모리 소자를 제작하였다. 메모리층인 ppS의 두께를 각각 30, 60, 90 nm로 달리한 유기 메모리 소자가 C-V 및 I-V 특성에서 나타내는 히스테리시스 현상을 분석하여 메모리 특성을 평가했으며, 메모리층의 두께 변화에 따른 유기 메모리 소자의 성능을 비교분석하였다.

  • PDF