• Title/Summary/Keyword: Organic Particle Size

Search Result 438, Processing Time 0.025 seconds

Application of Nanotechnology to Korean Black-Red Ginseng: Solubility Enhancement by Particle Size Reduction

  • Park, Seul-Ki;Kim, Yoon-Kyung;Youn, Hyung-Sun;Lee, Mi-Young
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.1
    • /
    • pp.52-60
    • /
    • 2008
  • In order to investigate whether the particles reduced to almost nano grade might affect the chemical and physical properties of organic materials, whole Korean Black-Red Ginseng was pulverized into almost nano size and then ginsenosides, minerals, carbohydrates, lipids and proteins in the ultrafine particles were compared with those in the regular particles as control. The mean size of the ultrafine particles was in the 350 nm range, while that of the regular particles was $127{\mu}m$. More ginsenosides, minerals, carbohydrates, lipids and proteins were detected in the ultrafine particles than in the regular particles. Interestingly, more lipids from the ultrafine particles dissolved in the water than those from the regular particles in the ethanol. Absorption and transport of carbohydrate, lipid or antioxidant activity across the intestinal wall using everted intestine sacks of mice was also enhanced by particle size reduction at the almost nano scale. More cytotoxic effect against hepatoma cell growth by ultrafine particles was also found. These results could be used as the basic data for the understanding and evaluation of the effects of organic nanomaterials on the human health.

The Influence of Surface Modification of Gold Nanoparticles Supported on TiO2 in the Catalytic Activity of CO Oxidation

  • Park, Da-Hee;Reddy, A.S.;Eah, Sang-Kee;Park, Jeong-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.213-213
    • /
    • 2011
  • Gold catalysts supported on TiO2 have shown a unique catalytic behavior on CO oxidation, depending on surface effects. Particle size has an influence on the surface activity. To make monodisperse Au nanoparticles, organic capping ligands, such as alkylthiols, were used by a "greener" synthesis method [1,2] and Au nanoparticles were deposited on TiO2. However, organic capping ligands must be removed for high catalytic activities by the Au nanoparticles without changing the Au size [3]. We used UV ozone treatment to decompose thiol ligands. The samples have been characterized by X-ray photoelectron spectroscopy to examine the surface modification by UV ozone treatment. We show the size distribution of the gold nanoparticles by light scattering analysis and transmission electron microscopy. Au/TiO2 have been prepared using the wetness impregnation method. The catalytic performance of CO oxidation over Au supported on TiO2 under oxidizing reaction conditions (40 Torr CO and 100 Torr O2) were tested. The results show that the catalytic activity depends on particle size and the time of UV ozone exposure, which suggests the role of sulfur bonding in determining the catalytic activity of Au/TiO2 catalysts.

  • PDF

Formation of Poly(ethylene glycol)-Poly($\varepsilon$-caprolactone) Nanoparticles via Nanoprecipitation

  • Lee, Jae-Sung;Hwang, Su-Jong;Lee, Doo-Sung;Kim, Sung-Chul;Kim, Duk-Joon
    • Macromolecular Research
    • /
    • v.17 no.2
    • /
    • pp.72-78
    • /
    • 2009
  • Size control of therapeutic carriers in drug delivery systems has become important due to its relevance to biodistribution in the human body and therapeutic efficacy. To understand the dependence of particle size on the formation condition during nanoprecipitation method, we prepared nanoparticles from biodegradable, amphiphilic block copolymers and investigated the particle size and structure of the resultant nanoparticles according to various process parameters. We synthesized monomethoxy poly(ethylene glycol)-poly($\varepsilon$-caprolactone) block copolymer, MPEG-PCL, with different MPEG/PCL ratios via ring opening polymerization initiated from the hydroxyl end group of MPEG. Using various formulations with systematic change of the block ratio of MPEG and PCL, solvent choice, and concentration of organic phase, MPEG-PCL nanoparticles were prepared through nanoprecipitation technique. The results indicated that (i) the nanoparticles have a dual structure with an MPEG shell and a PCL core, originating from self-assembly of MPEG-PCL copolymer in aqueous condition, and (ii) the size of nanoparticles is dependent upon two sequential processes: diffusion between the organic and aqueous phases and solidification of the polymer.

Preparation and Characterization of Phenolic/Furfural Organic Gel Microspheres in Supercritical $CO_2$ (초임계 이산화탄소를 이용한 Phenolic/Furfural계 유기 겔 입자의 합성 및 물성)

  • 이경남;이해준;김중현
    • Polymer(Korea)
    • /
    • v.24 no.1
    • /
    • pp.8-15
    • /
    • 2000
  • Phenolic/furfural(P/F) gel microspheres were successfully produced by new supercritical $CO_2$-based process. $CO_2$-soluble poly(dimethylsiloxane) (PDMS) was used as the stabilizer in this system. Spherical morphology of the gel microspheres was confirmed by scanning electron microscopy. Particle size and particle size distribution of P/F gel microspheres can be modified by variety of the solids content and the stabilizer content. The resultant P/F gel microspheres have average particle size in the range of 1-6 ${\mu}{\textrm}{m}$. The structure of P/F gel microspheres was revealed by thermogravimetric analysis and IR analysis.

  • PDF

A Comparative Study on the Conditioning and Dewaterability of Digested Sludge from Intermittent Aerobic Digestion (간헐포기 소화슬러지의 개량과 탈수 특성에 관한 비교 연구)

  • Kim, Seong Hong;Choi, Young Gyun;Chung, Tai Hak
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.4
    • /
    • pp.370-375
    • /
    • 2004
  • Synthetic organic polyelectrolytes can be used to condition sludges to enhance their dewaterability. When conditioning biological sludges, the charge on the polymer has a significant impact on the effectiveness of the polymer as a conditioner. The objectives of this investigation were to determine the most effective type and dosage of polymer for conditioning digested sludge prior to dewatering, and to investigate the relationship between dewaterability and particle size. 3 types of digested sludge were used under the different digestion processes like anaerobic digestion, aerobic digestion and intermittent aerobic digestion. CST(capillary suction time), TTF(time-to-filter) and SRF(specific resistance to filtration) were tested as a dewaterability index and the number of particle distribution was analyzed using particle size analyzer. The results indicate that cationic polymer appears to be required for effective conditioning of these 3 types digested sludge and the optimal polymer dosage is about 0.6% of SS. CST and TTF are well correlated with mean particle diameter of which the dimension order is 1.7.

Synthesis of Size Controlled Spherical Silica Nanoparticles via Sol-Gel Process within Hydrophilic Solvent

  • Kim, Tae Gyun;An, Gye Seok;Han, Jin Soon;Hur, Jae Uk;Park, Bong Geun;Choi, Sung-Churl
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.1
    • /
    • pp.49-54
    • /
    • 2017
  • In this study, based on hydrolysis and condensation via $St{\ddot{o}}ber$ process of sol-gel method, synthesis of mono-dispersed silica nanoparticles was carried out with hydrophilic solvent. This operation was expected to be a more simplified process than that with organic solvent. Based on the sol-gel method, which involves simply controlling the particle size, the particle size of the synthesized silica specimens were ranged from 30 to 300 nm by controlling the composition of tetraethylorthosilicate (TEOS), DI water and ammonia solution, and by varying the stirring speeds while maintaining a fixed amount of ethanol. Increasing the content of DI water and decreasing the content of ammonia caused the particle size to decrease, while controlling the stirring speed at a high level of RPMs enabled a decrease of the particle size. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) were utilized to investigate the success factors for synthesizing process; Field emission scanning electron microscopy (FE-SEM) was used to study the effects of the size and morphology of the synthesized particles. To analyze the dispersion properties, zeta potential and particle size distribution (PSD) analyses were utilized.

Preparation and Physical Properties of Poly(Styrene/Acrylate) Core-Shell Latex Particles (Poly(Styrene/Acrylate) Core-Shell 라텍스 입자의 제조와 물성에 관한 연구)

  • Lee, Kyoung-Goo;Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.27-32
    • /
    • 2003
  • The core-shell latex particles were prepared by sequential emulsion polymerization of alkyl methacrylate and styrene(ST) by using an water-soluble initiator(APS) after preparing monomer pre-emulsion in the presence of an anionic surfactant(SDBS). In organic/organic core-shell polymerization, the pre-emulsion method, which minimized required quantity of sulfactant, has been used to increase the conversion rate and the stability of core-shell latex particles as well as to reduce the formation of secondary particle that cause problems of soap-free emulsion during shell polymerization. We used several methods to observe the core-shell structure. The core-shell structure was studied by measuring pH change during hydrolysis by NaOH, glass transition temperature($T_g$) by differential scanning calorimeter(DSC), morphology of latex by transmission electron microscope(TEM) and change of particle size and distribution by a particle analyzer.

Distribution Characteristics of Organotin Compounds in Sediments inside Jeju Harbor of Jeju Island (제주도 제주항내 퇴적물 중의 유기주석화합물의 분포 특성)

  • Kam, Sang-Kyu;Kim, Hyun-Jeong;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.20 no.3
    • /
    • pp.385-394
    • /
    • 2011
  • Organotin compounds (OTs), namely butyltins compounds (BTs) and phenyltin compounds (PhTs), were measured in surface and core sediments collected in Jeju harbor. The horizontal and vertical distribution was examined and the relationship between the concentration of OTs and organic matter content and particle size distribution was also studied. BTs were detected in significant concentrations in sediments inside Jeju harbor. PhTs were detected in very low concentrations, compared to BTs. The main species in BTs and PhTs were dibutyltin (DBT) and monobutyltin (MBT), monophenyltin (MPhT), respectively. In the relationships between the concentrations of total BTs and organic carbon content, the significant correlations ($r^2$=0.4898 in surface sediments, $r^2$=0.53 in one core sediments) and no correlation in another core sediments obtained, which is estimated that the distribution of BTs in sediments were affected by several factors, such as their physicochemical properties including organic carbon content, and a tide, etc. In the relationships between the concentrations of total BTs and particle size (mud, sand, and gravel) in sediments, the concentrations of total BTs were higher in the sediments with higher mud content, indicating that higher BTs were distributed with increasing sediments of fine granules.

Alginate Nanohydrogels Prepared by Emulsification-Diffusion Method

  • Lee, So-Min;Yoo, Eun-Soo;Ghim, Han-Do;Lee, Su-Jeong
    • Macromolecular Research
    • /
    • v.17 no.3
    • /
    • pp.168-173
    • /
    • 2009
  • This study reports the preparation and characterization of nanohydrogels by using sodium alginate as a model material. Alginate nanohydrogels (ANH) were prepared by emulsification-diffusion method in a w/o system with 1,2-diacyl-sn-glycero- 3-phosphocholin as the lipophilic surfactant. The effects of the alginate to surfactant ratio and the remaining water contents on the mean particle size and swellability of ANHs were investigated in terms of the concentration, agitation speed, and agitation time. The feasibility of using nanohydrogels and their controllability were proved by the water the absorbency of ANHs during a 7-day evaluation by dynamic light scattering. In this work, the mean particle sizes of ANHs could be controlled from 49.2 nm (measured in ethanol phase) to $1.9{\mu}m$ (measured in water phase, after 7 days of water absorption).

Sustained Release of Water-Soluble Blue Dextran from PLGA Nanoparticles (PLGA 나노파티클로부터 수용성 블루 덱스트란의 서방성 방출)

  • Ryu, Sang-Hwa;Hwang, Sung-Joo;Park, Jeong-Sook
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.2
    • /
    • pp.109-114
    • /
    • 2006
  • Biodegradable poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles were developed for sustained delivery of water-soluble macromolecules. PLGA nanoparticles were fabricated by spontaneous emulsification solvent diffusion method generating negatively charged particles and heterogeneous size distribution. As a model drug, blue dextran was encapsulated in PLGA nanoparticles. In addition, nanoparticles were also prepared with varying ratio of poloxamer 188 (P188) and poloxamer 407 (P407), and coating with poly(vinyl alcohol) (PVA). Then, the particle size, zeta potential and encapsulation efficiency of nanoparticles containing blue dextran were studied. In vitro release of blue dextran from nanoparticles was also investigated. The surface and morphology of nanoparticles were characterized by scanning electron microscopy (SEM). In case of nanoparticles prepared with PLGA, P407, and different organic solvents, particle size was in the range of $230{\sim}320\;nm$ and zeta potentials of nanoparticles were negative. The SEM images showed that ethyl acetate is suitable for the formulation of PLGA nanoparticles with good appearance. Moreover, ethyl acetate showed higher encapsulation efficiency than other solvents. The addition of P188 to formulation did not affect the particle size of PLGA nanoparticles but altered the release patterns of blue dextran from nanoparticles. However, PVA, as a coating material, altered the particle size with increasing the PVA concentration. The nanoparticles were physically stable in the change of particle size during long-term storage. From the results, the PLGA nanoparticles prepared with various contents of poloxamers and PVA, could modulate the particles size of nanoparticles, in vitro release pattern, and encapsulation of water-soluble macromolecules.