• Title/Summary/Keyword: Organic Paddy

Search Result 545, Processing Time 0.026 seconds

Classification of Hydrologic Soil Groups of Soil Originated from Limestone by Assessing the Rates of Infiltration and Percolation (석회암 유래 토양의 침투 및 투수속도 평가에 따른 수문유형 분류)

  • Hur, Seung-Oh;Jung, Kang-Ho;Sonn, Yeon-Kyu;Ha, Sang-Keun;Kim, Jeong-Gyu;Kim, Nam-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.2
    • /
    • pp.103-109
    • /
    • 2009
  • Soils originated from limestone, located at the southern part of Kangwon province and Jecheon, Danyang of Chungbuk province are mainly composed of fine texture, and have different properties from soils originated from granite and granite gneiss, especially for water movement. This study was conducted for classification of hydrologic soil group (HSG) of soils originated from limestone by measuring the infiltration rate of surface soils and percolation rate of sub soils. Soils used for the experiment were 6 soils in total : Gwarim, Mosan, Jangseong, Maji, Anmi and Pyongan series. Infiltration and percolation rate were measured by a disc tension infiltrometer and a Guelph permeameter, respectively. Particle size distribution and organic matter content of the soils were analyzed. HSG, which was made by USDA NRCS(National Resources Conservation Service) for hydrology, of Gwarim series with O horizon of accumulated organic matter was classified as type A which show the properties of low runoff potential, rapid infiltration and percolation rate. HSG of Mosan series, which has high gravel content and very rapid permeability, was classified as type B/D because of the impermaeble base rock layer under 50cm from surface. HSG of Jangseong series with shallow soil depth was classified as type C/D owing to the impermaeble base rock layer under 50cm from surface. HSG of Maji series was type B, and HSG of Anmi series used as paddy land was type D because of slow infiltration and percolation rate caused by the disturbance of surface soil by puddling. HSG of Pyeongan series having a sudden change of layer in soil texture was type D because of the slow percolation rate caused a the layer.

Weed Population and Rice Yield in Organic Rice-Green Manure Crops Rotation System (녹비작물 이용 유기벼 재배지의 논잡초 발생과 벼 수량)

  • Choi, Bong-Su;Jeon, Weon-Tai;Lee, Yong-Hwan;Kim, Min-Tae;Eum, Sun-Pyo;Oh, Gae-Jung;Cho, Hyun-Suk;Park, Tae-Seon;Seong, Ki-Yeong
    • Korean Journal of Weed Science
    • /
    • v.31 no.4
    • /
    • pp.360-367
    • /
    • 2011
  • The use of green manure crop is one of the methods for alternative of chemical fertilizer as well as maintain of soil sustainability, therefore we evaluated the effect of green manure crops on rice growth and weed occurrence in rice-green manure crop double cropping system. The treatments consisted of incorporation of hairy vetch, barley or combined hairy vetch and barley without any agrochemical or fertilizer. In hand weeding, rice yield in hairy vetch only or hairy vetch and barley incorporated fields was attained by 90% and 93% of the conventional practice, respectively, while the value in barley incorporated fields was just 79%. Although the rice yields were lower than the hand weed control, similar trends in non-weed control were observed among all treatments. At maximum tillering stage, occurred weeds in hairy vetch, barley or hairy vetch and barley incorporated fields were five, five and two species, respectively, while those in conventional practice were six species. Also, the dry weight of weeds in hairy vetch and barley incorporated fields was decreased by 33% and 53% compared to it of conventional practice, while the value in hairy vetch and barley incorporated field was increased by 34%. Among all treatments, although occurrence density of Echinochloa crus-galli was lower than another weed species, the dry weight of it significantly increased. These results suggested that although continuous incorporation of proper amount of legume green manure crops was possible to productivity insurance of crop, but to attain it was essential to the effective management of weeds.

Comparison of Total and Inorganic Arsenic Contamination in Grain and Processed Grain Foods (곡류 및 곡류 가공식품의 총비소 및 무기비소 오염 비교)

  • Eun-Jin, Baek;Myung-Gil, Kim;Hyun-Jue, Kim;Jin-Hee, Sung;You-Jin, Lee;Shin-Hye, Kwak;Eun-Bin, Lee;Hye-Jin, Kim;Won-Joo, Lee;Myung-Jin, Lee
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.6
    • /
    • pp.385-393
    • /
    • 2022
  • The contamination level of inorganic arsenic, a human carcinogen, was investigated in 87 grains and 66 processed grain foods. Two inorganic arsenic species arsenite (As(III)) and arsenate (As(V)) and four organic arsenic monomethylarsonic acid, dimethylarsinic acid, arsenobetaine, arsenocholine were analyzed using HPLC-ICP/MS with high separation and sensitivity and ICP/MS was used to quantify total arsenic. Inorganic arsenic was detected in all grains. And the total arsenic in grains consists of about 70-85% inorganic arsenic and about 10-20% DMA. The concentration of inorganic arsenic was high in rice and black rice cultivated in paddy soil with irrigated water, while the miscellaneous grain in field was low. Mean concentration of inorganic arsenic in rice germ, brown rice and polished rice was 0.160 mg/kg, 0.135 mg/kg, 0.083 mg/kg, respectively, indicating that rice bran contains more arsenic. In processed grain foods, inorganic arsenic concentration varied according to the kind of ingredients and content, and the detection amount was high in processed food with brown rice and germ. The arsenic content of all samples did not exceed each standard, but the intake frequency is high and it is considered that continuous monitoring is necessary for food safety.

Determination of optimum fertilizer rates for barley reflecting the effect of soil and climate on the response to NPK fertilizers (기상(氣象) 및 토양조건(土壤條件)으로 본 대맥(大麥)의 NPK 시비적량결정(施肥適量決定))

  • Park, Nae Joung;Lee, Chun Soo;Ryu, In Soo;Park, Chun Sur
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.7 no.3
    • /
    • pp.177-184
    • /
    • 1974
  • An attempt was made to determine simple and the most reasonable fertilizer recommendation for barley utilizing the present knowledge about the effect of soil and climatic factors on barley response to NPK fertilizer in Korea and establishing the critical contents of available nutrients in soils. The results were summarized as follows. 1. The relationships between relative yields or fertilizers rates for maximum yields from quadratic response curves and contents of organic matter, available $P_2O_5$, exchangeable K in soils were examined. The trend was more prospective with relative yields because of smaller variation than with fertilizer rates. 2. Since the relationship between N relative yields and organic matter contents in soils was almost linear over the practical range, it was difficult to determine the critical content for nitrogen response by quadrant methods. However, 2.6%, country average of organic matter content in upland soils was recommended as the critical point. 3. There showed a trend that average optimum nitrogen rater was higher in heavy texture soils, colder regions. 4. The critical $P_2O_5$ contents in soil were 96 or 118 ppm in two different years, which were very close to the country average, 114 ppm of $P_2O_5$ contents in upland soils. The critical K content in soil was 0.32 me/100g, which was exactly coincident to the country average of exchangeable K in upland soils. 5. According to the contents of avaiiable $P_2O_5$ and exchangeable K, several ranges were established for the purpose of convenience in fertilizer recommendation, that is, very low, Low, Medium, High and very High. 6. More phosphate was recommended in the northern region, clayey soils, and paddy soils, whereas less in the southern region and sandy soils. More potash was recommended in the northern region and sandy soils, whereas less in the southern region and clayey soils. 7. The lower the PH, the more fertilizers were recommended. However, liming was considered to be more effective than increas in amount of fertilizers.

  • PDF

Study on The Distribution of Applied 32P into Different Forms of P Compounds in the Soils During Incubation (논·밭 토양(土壤)에 시용(柴用)된 32P의 토양중(土壤中) 상이(相異)한 인산화합물(燐酸化合物)로의 분배(分配)에 관(關)한 연구(硏究))

  • Hong, Jung-Kook;Hong, Chong-Woon;Park, Sang-Ji;Steenberg, Kjell
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.12 no.3
    • /
    • pp.117-124
    • /
    • 1979
  • The present work was carried out to study the fate of applied phosphorus labelled with $^{32}P$ and its availability to plants in soils subjected to different management practices. The results can be summarized as follows (Table 3): 1. The applied phosphorus was transformed into different phosphorus compounds in the soils depending upon the management practices and soil characteristics. 2. In the flooded paddy soil (pH 5.8) added P after one week of incubation was transformed into various fractions, the order of abundance being: Al-P> Ca-P$${\sim_\sim}$$Fe-P> Org.-P. After two weeks the order changed to: Fe-P> Al-P> Ca-P> Org.-P. The amounts of the Fe-P and Al-P fractions were found to increase from the second week of incubation whereas a decrease in Ca-P was noticed with the organic-P remaining constant. The amount of available P decreased from the first to the third week of incubation, but increased thereafter. 3. In the volcanic ash soil a major proportion of the applied phosphorus was found in the Fe-P fraction during the whole experimental period. The interconversions of the $^{32}P$ among the different phosphate fractions was not as evident as in the case of flooded rice soil. The recovery of applied P was low and remained constant throughout the incubation period. 4. In the upland soils relatively more of the applied phosphorus was found in the Ca-P fraction as compared with those of the other soils. As in the flooded paddy soil $^{32}P$ in the Ca-P fraction decreased with increasing incubation time, whereas in the Fe-P fraction it increased with time. The recovery of added phosphate as available P followed different patterns for the cultivated and the uncultivated soils. In the cultivated soils lit was relatively high and remained nearly constant during the whole incubation period. In the uncultivated soil on the other hand, it was high at the earlier time of incubation, but decreased with incubation time.

  • PDF

Studies of the soil characteristice and NPK fertilizer response of local valley paddy soils in rolling lands(Jisan and Yongji series) (저구릉(低丘陵) 곡간지(谷間地) 답토양(沓土壤)(지산통(芝山統)과 용지통(龍池統))의 특성(特性)과 시비반응(施肥反應)에 관(關)한 연구)

  • Ryu, In-Soo;Shin, Yong-Hwa;Lee, Dong-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.9 no.4
    • /
    • pp.235-244
    • /
    • 1976
  • Following results are obtained by re-evaluating N. P. K. and soil improvement trials conducted from 1964 to 1969 in valley paddy soils in rolling lands (Jisan-series, imperfectly drained and Yongji-series, moderately well drained). 1. Average grain yield of rice in no fertilizer plots and the highest yield plots for Yongji-series (31 experiments) were 319 and 507kg/10a respectively, and that of Jisan-series (15 experiments) were 396 and 567kg/10a respectively. The fertility difference between two series may have been a result of the cultivation history. Jisan-series is a mature soil which has a long cultivation history and Yongji-series is sub-mature soil 2. Soil chemical characteristics for Jisan-series are charaterized by 12.8meq/100g in CEC, 6.5meq/100g in exchangeable Ca, 3.9% in OM, and 64 ppm in available $P_2O_5$ For Yongji-series they were 10.4meq/100g in CEC, 4.7meq/100g in exchangeable Ca, 3.2% in OM and 103ppm in available $P_2O_5$. 3. Deep plowing and application of organic matter and lime are expected to be effective in increasing fertility level of soils of Yongji-series. The same will be effective in some soils of Jisan series where the fertility level is low. 4. Jisan-series shows high response to nitrogen, while Yongji series shows sharp decrease in rice yield at the high levels of nitrogen. Both series, however, showed high response to nitrogen only when the OM level was higher than 3%. 5. The optimum level of nitrogen was 8~9kg for Jisan-series, and 10~11kg/10a for Yongji-series. The yield increase per kg of applied nitrogen was 12kg for Jisan-series and 13kg for Yongji series. 6. The optimum level of phosphorus at the optimum level of nitrogen was 6kg/10a for Yongji-series and 3kg/10a for Jisan-series. The optimum level of phosphorus, however, was different depending upon the nitrogen level. It was assumed that Yongji-series required more fertilizer (available $P_2O_5$ was 110ppm) than Jisan-series (available $P_2O_5$ was 64ppm) because the availability of P was higher in Jisan-series than Yongji-series due to the severe reduction of Jisan-series. 7. The response of potassium was also depending upon the nitrogen level. In Yongji-series the potassium response at 8kg/10a nitrogen level decreased with increasing levels of potassium, but the higher level of introgen, potassium response was also higher. In Jisan-series potassium response was recognized at all nitrogen levels. The optimum level of potassium at the optimum level of nitrogen was 8kg/10a in both serieses. 8. The reasonable ratio of NPK fertilizer seems to be 1:0.6:0.6:for Yongji-series and 1:0.4:1 for Jisan-series as N:$P_2O_5$:K.

  • PDF

Studies on agronomic characters of rice and soil textures in Akiochi paddy field (추락도(秋落稻)의 형태적(形態的) 특성(特性) 및 추락답토양(秋落畓土壤)에 관(關)한 연구(硏究))

  • Cho, Baik-Hyun;Lee, C.Y.;Lee, E.W.
    • Applied Biological Chemistry
    • /
    • v.6
    • /
    • pp.61-77
    • /
    • 1965
  • In this experiment, Akiochi was studied especially on plant growth on the degraded soils. Besides, such soils were carefully examined on its character and plant body was analysed to know the difference in various mineral contents. For this purpose, paddy cultivation was done with the variety Pal Dal at Suwon, Sosa and Pyungtak. Three plots were chosen at each location as the normal and 2 levels of akiochi, a-the stronger and b-the weaker. Harvests from these 9 plots were measured agronomically and also chemically analysised. As for soil, after an observation on vertical section of soil, samples from each layer were also studied both physically and chemically. The results are summarized as follows. 1. Outer changes in rice plant and changes in yield components. 1) Rice from Akiochi soil showed remarkably shortened culm length, head length, protrusoion length, blade length of boot leaf, and coleoptile length, compared with that from the normal paddy field. 2) There was a tendency for Akiochi rice to have more heads per plant. 3) Akiochi rice showed poorer intercalary growth of upper 3 internodes. The ratio of this upper internode length to total culm length was also smaller in this case. Consquently the ratio of lower internode length to total culm length became larger than that from normal peddy field. 4) Akiochi rice showed significantly fewer first spikelets and attached grains of head at main stem. 5) Maturing rate of both this main seem of whole plant body was remarkably lower than that of normal rice. 6) Akiochi rice showed lower head weight of main stem, total hulled rice weight, total grain yield, 1000-grain weight, straw weight and straw-hulled rice ratio. 2. Physical and chemical study on soil. 1) Akiochi soil showed thinner upper layer and total thickness of upper and lower parts was smaller than that of normal. 2) Akiochi soil of Suwon was mainly composed of sand, while that of Sosa and Pyungtak was composed of heavy clay. 3) Chemical analysis indicated that content of $SiO_2$ in upper layer is always lower than that of normal. But no other common tendencies were found. 4) This analysis further lillustrates lower content of Fe, & Mn at Suwon ; of Mn at Sosa and higher content of Fe at Sosa and organic matters at Pyungtak. 5) Some differences in the content of N in each plot could be marked though irregular. 3. Chemical Composition of plant body. 1) Chemical analysis on grain, boot leaf and straw did not suggest any remarkable differences between normal and Akiochi rice, except that the latter contains less Si in boot leaf and less Mn in straw. 2) Contents of each chemical element were measured in grain and straw to calculate the percentage of element content in grain to that of whole plant body including both grain and straw. Here, Akiochi rice always showed lower value in N, K and Mn. 4. Relationship between chemical composition of plant body and that of soil. Akiochi soil at Sosa marked lower content of Mn. This caused another lower content of this element in grain, boot leaf and straw. But except that, no remarkable relationship could be found in this study.

  • PDF

Mineral Nutrition of Field-Grown Rice Plant -II Recovery of fertilizer nitrogen, phosphorus, and potassium in relation to climatic zone and physical or chemical characteristics of soil profile (포장재배(圃場栽培) 수도(水稻)의 무기영양(無機營養) -II 삼요소(三要素) 이용율(利用率)과 기상권(氣象圈) 및 토양단면(土壤斷面)의 물리(物理)·화학적(化學的) 성질(性質)과의 관계(關係))

  • Park, Hoon;Shin, Chun Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.6 no.1
    • /
    • pp.17-26
    • /
    • 1973
  • A survey on nutrient recovery by rice plant was carried out countrywide in 1967 and 1968. The relationships between percent recovery of fertilizer nutrient and climatic zone or deposition mode, drainage grade, and texture of paddy soil profile, or chemical characteristics of surface soil were as follows. 1. The percent recovery of fertilizer nitrogen was highest in south and least in north, and that of potassium was highest in south and least in middle climatic zone. 2. Since the percent recovery of Phosphorus variates yearly with climatic zone, mode of deposition drainage grade or soil texture, it seemed to depend greatly on soil-weather interaction. 3. Nitrogen recovery was highest in alluvial colluvial (AC) and it was followed by alluvial (A), fluvomarine (FM) and old alluvial in decreasing order while potassium recovery was OA>AC>A>FM. 4. The greater the drainage was, the higher the nitrogen recovery. The recovery of potassium and phosphorus tended to show high in moderately well drain, and low in poorly and well drain. 5. Nitrogen recovery was highest in fine silty and gradually decreased with coarseness. That of potassium or phosphorus was greater in those below fine loamy than in those above coarse silty. 6. Nitrogen recovery was high in Jisan, Geugrag, and Sindab series, and low in Hwadong, Gyuam, Yongji and Hwabong series. 7. Nitrogen recovery showed significant positive correlation with the content of organic matter (OM), Ca, CEC of surface soil and only in the year of high phosphorus recovery it had significant negative correlation with soil phosphorus. Phosphorus recovery had significant posititive correlation with CEC, Mg or Ca. 8. Potassium recovery showed negative correlation with K/(Ca+Mg), P, OM or K while positive correlation with Ca, Mg, CEC but significant only with K/(Ca+Mg) in the year of low potassium recovery. In the year of high K recovery it showed positive correlation with P, OM, K/(Ca+Mg) or K while negative with CEC, Mg or Ca but significant only with P, OM or CEC. Soil potassium has significant positive correlation with soil OM and P only in the year of low potassium recovery. 9. The percent recovery of N, P or K showed negative correlation coefficient with pH without significant. 10. There was significant positive correlation between OM and P, K or K/(Ca+Mg), P and K or K/(Ca+Mg), K and K/(Ca+Mg), Mg or CEC, Ca and K/(Ca+Mg), Mg, CEC or pH, Mg and CEC while significant negative correlation between Mg and OM, P or K/(Ca+Mg), P and CEC, Ca and K/(Ca+Mg). 11. From the percent rcovery of fertilizer and soil chemical characteristics it was known that soil organic matter increase nitrogen uptake, that K uptake has closer relation to K/(Ca+Mg) than K, that Mg affects P ugtake, and that the annual difference of P and K recovery was partly explainable.

  • PDF

Investigation of Relationships between Soil Physico-chemical Properties and Topography in Jeonbuk Upland Fields (전북지역 밭 토양의 지형별 물리화학적 특성)

  • Ahn, Byung-Koo;Lee, Jae-Hyoung;Kim, Kab-Cheol;Choi, Dong-Chil;Lee, Jin-Ho;Han, Seong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.268-274
    • /
    • 2010
  • The properties of upland soils are much more dependent upon topography than those of paddy soils, and they give us very useful information to manage the upland fields. Therefore, we investigated the selected physical and chemical properties of upland soils at 84 and 150 topographic sampling sites, respectively. The topographic sites included 34.7% of local valley and fans, 18.7% of hilly and mountains, 20.0% of mountain foot slopes, 14.0% of alluvial plains, 8.0% of diluvium, and 4.6% of fluvio-marine deposits. Based on the investigation, soil textures in Jeonbuk upland fields were mostly sandy loam, sandy clay loam, clay loam, and clay soils, especially sandy clay loam soils were evenly distributed in all of the topographic sites. Soil slopes in the sites ranged from 0 to 15%, which showed an optimal condition for farm land. Soil bulk density and compaction values were from 1.19 to 1.24 g $cm^{-3}$ and from 12.1 to 13.9 mm, respectively. As comparing with the optimal conditions of soil chemical properties for upland soils proposed by National Institute of Agricultural Science and Technology, Korea, 37%, 42.7%, 93.0% of the sites were within optimum levels with soil pH, content of soil organic matter, and electrical conductivity, respectively. However, 64.0%, 47.3%, 48.7%, and 42.7% of the upland soils contained excess levels of exchangeable K, Ca, and Mg, and available phosphorus, respectively. In addition, the contents of heavy metals, As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn, in the Jeonbuk upland soils were much less than threshold levels.

Status and Change in Chemical Properties of Polytunnel Soil in Korea from 2000 to 2012

  • Kang, Seong Soo;Roh, Ahn Sung;Choi, Seung Chul;Kim, Young Sang;Kim, Hyun Ju;Choi, Moon Tae;Ahn, Byoung Gu;Kim, Hee Kwon;Park, Sang Jo;Lee, Young Han;Yang, Sang Ho;Ryu, Jong Soo;Sohn, Yeon Gyu;Kim, Myeong Sook;Kong, Myung Suk;Lee, Chang Hoon;Lee, Deog Bae;Kim, Yoo Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.641-646
    • /
    • 2013
  • Chemical properties of agricultural soils in Korea have been investigated at four-year interval in order of paddy, polytunnel, upland, and orchard soils since 1999; polytunnel soils were investigated over the whole country in 2000, 2004, 2008, and 2012. Polytunnel soils were taken from the surface (0-15 cm) and subsurface (15-30 cm) at 2,651, 1,274, 1,374 and 1,374 sites in all provinces of South Korea. One hundred sampling sites located in more than 400 m altitude were additionally investigated in 2008 and 2012. Average of soil chemical properties in 2012 except Jeju province were 6.6 for pH, 3.2 dS $m^{-1}$ for EC, 37 g $kg^{-1}$ for organic matter (OM), 1,049 mg $kg^{-1}$ for available (Avail.) phosphate, 1.58 $cmol_c\;kg^{-1}$ for exchangeable (Exch.) K, 10.6 $cmol_c\;kg^{-1}$ for Exch. Ca, and 3.3 $cmol_c\;kg^{-1}$ for Exch. Mg. Except pH, averages of all chemical properties exceeded the upper limit of optimal range. The median values except pH showed a lower value than the averages. The pH, OM and Exch. Ca had slightly increased from 6.3 to 6.6, from 34 to 37 g $kg^{-1}$, and from 7.7 in 2000 to 10.6 $cmol_c\;kg^{-1}$ in 2012, respectively. The order of sample ratios exceeding the optimal range were Avail. $P_2O_5$ (83%) > Exch. Ca (80%) > Exch. K (70%) > Exch. Mg (65%) > EC (55%) > OM (48%) > pH (29%) in 2012. The order of sample ratios below the optimal range was OM (25%) > Exch. K (25%) > pH (20%), Exch. Mg and Avail. $P_2O_5$ (9%) > Exch. Ca (6%) in 2012. The excessive proportion of pH, Exch. Ca, Exch. Mg and OM slightly increased, while the insufficient proportion of those decreased. Approximately 55% of polytunnel soils exceeding EC 2 dS $m^{-1}$ was evaluated with salt accumulated soils having the risk of growth disorder of crops. Nutrient contents in polytunnel soils in Korea showed high level especially Avail. $P_2O_5$ and Exch. cations. Therefore, recommended fertilization based on soil testing or plant testing is needed for soil nutrient management.