• Title/Summary/Keyword: Organic Paddy

Search Result 545, Processing Time 0.024 seconds

Comparison of Soil Extractants for Estimation of Cadmium, Zinc and Lead in Brown Rice Grown at Paddy Soils near Old Zinc-Mining Sites (현미중(玄米中) 중금속(重金屬) 함량예측(含量豫測)을 위한 토양침출액(土壤浸出液)의 비교(比較) I. 침출액(浸出液)의 종류(種類)와 토양중(土壤中) 카드뮴, 아연(亞鉛) 및 연(鉛)의 침출성(浸出性))

  • Yoo, Sun-Ho;Park, Moo-Eon
    • Korean Journal of Environmental Agriculture
    • /
    • v.4 no.1
    • /
    • pp.25-30
    • /
    • 1985
  • In order to characterize relationship between accumulation of cadmium, zinc and lead in soil and soil chemical properties and also to choose a suitable soil extractant for the prediction model of heavy metal content in brown rice, four extractants-0.1 M HCl, 0.1 M $HNO_3$, 0.1 M $NH_4-oxalate$ and 0.001 M 2Na-EDTA, were compared by analyzing 84 soil samples collected from paddy fields adjacent to five zinc-minig sites. Contents of Cd, and Pb in soil increased with Zn content and those of three elements were found to be much higher in surface soil ($0{\sim}15 cm$) than suvsqrface soil ($15{\sim}30 cm$). Contents of these elements in soil were positively correlated with soil pH, but its correlation between extractable heavy metal content and organic matter or CEC varied from region to region. These three elements were negatively correlated with Mg content of soils. The extractability of the metals was in the order 0.1 M $HCI{\geq}0.1 M$ $HNO_3>0.001 M$ 2Na-EDTA>0.1 M $NH_4-oxalate$.

  • PDF

Comparison of Soil Extractants for Estimation of Cadmium, Zinc and Lead in Brown Rice Collected from Paddy Soils near Old Zinc-Mining Sites II. A prediction Model for Cadmium, Zinc and Lead Contents in Brown Rice Based on Some Chemical Properties of Soils (현미중(玄米中) 중금속(重金屬) 함량예측(含量豫測)을 위한 토양침출액(土壤浸出液)의 비교(比較) II. 토양분석(土壤分析)에 의(依)한 현미중(玄米中) 중금속(重金屬) 함량(含量) 예측(豫測))

  • Yoo, Sun-Ho;Park, Moo-Eon
    • Korean Journal of Environmental Agriculture
    • /
    • v.4 no.1
    • /
    • pp.31-36
    • /
    • 1985
  • In order to choose a suitable soil extractant for the prediction model of heavy metal content in brown rice, four extractants-0.1 M HCl, 0.1 M $HNO_3$, 0.1 M $NH_4$-oxalate and 0.001 M 2Na-EDTA, were compared by analyzing 84 soil and 45 brown rice samples collected from paddy fields adj-acent to five old zinc-mining sites. Content of cadmium and zinc in brown rice had the highest correlation coefficient to 0.001 M 2Na-EDTA and 0.1 M HCl extractants, respectively. However, the lead content in brown rice was significantly correlated with only 0.1 M $NH_4$oxalate solution. For the simultaneous prediction of zinc, cadmium and lead in brown rice, 0.1 M $NH_4$-oxalate solution was the most effective. On the multiple analysis by using various chemical characteristics of soils, pH and calcium content of soils were effective variables for the estimation of cadmium content in brown rice, while CEC and magnesium content were more effective for the estimation of zinc content in brown rice. Furthermore, for the estimation of lead content in brown rice, factors such as pH, CEC, calcium, magnesium, potassium and organic matter content were important variables in the multiple regression equation.

  • PDF

Responses of phosphorus, silicate crgaric matter to rice in heavy clay textured paddy soil (Whadong Series) developed on alluvial terrace (홍적태지(洪積台地)에 발달(發達)된 중점질(重粘質) 토양(土壤)(화동통(華東統))에 대(對)한 인산(燐酸) 규산(珪酸) 및 유기물(有機物)의 시용효과(施用效果))

  • Ahn, Sang-Bai;Ryu, In-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.4
    • /
    • pp.235-243
    • /
    • 1978
  • A field experiment was conducted to confirm the effect of phosphorus, calcium silicate and different kinds of organic matter to a red-yellow heavy clay textured paddy soil, developed on alluvial terrace. 1. The yield response of phosphorus was very high in both Tongil (Indica x lap.) and Jinheung (Japonica type) varieties. Twenty percent of yield increase with 56kg $P_2O_5$ per 10a. 2. Yield increase by application of phosphorus was closely resulted from increase of tillers per plant. The increases of tillers per plant as observed at harvesting stage by phosphorus fertilization were 3.6 tillers in Tongil, 1.9 in Jinheung, while ripening ratio adversely was decreased 4% in Tongil and increased 3% in Jinheung. 3. High correlation between P content and yield was found at earformation and heading stages. The content of P in rice plant necessary to produce maximum yield in this soil was 0.8 percent at earformation stage. 4. The effect of silicate was not significant for Tongil but was obvious for Jinheung, and the effect of compost and rice husk was also significant for Jinheung. 5. Addition of silicate and lime to phoshorus treatment decreased the nitrogen content of rice plant, especially in Tongil. Accordingly, significant responses of silcate and lime seems be appeared by increasing the rate of nitrogen application.

  • PDF

A Study on PCP Adsorption in Various Paddy Soils of the Choongbook Area (충북지방(忠北地方) 답토양(沓土壤)에 대(對)한 PCP 흡착에 관한 연구(硏究))

  • Ok, Hwan-Suk;Lee, Jae-Koo
    • Applied Biological Chemistry
    • /
    • v.15 no.3
    • /
    • pp.229-240
    • /
    • 1972
  • Not only in order to determine reasonable application amounts of PCP in terms of soil texture, but also to get basic data for fish-toxicity-free treatment by estimating fish toxicity, some aspects of PCP adsorption were observed taking various paddy soils with different physico-chemical characteristics in the Choongbook Area as samples. The results obtained are summarized as follows: 1. There was a positive correlation between PCP adsorption and clay contents, total nitrogen, organic matter, cation exchange capacity, exchangeable bases, and phosphorus absorption coefficients, respectively; whereas there was a negative one between PCP adsorption and pH. Although they were not significant, it was remarkable that there was a relatively large amount of correlation between PCP adsorption and clay contents, $H^+,\;Mg^{++}$, and CEC, respectively. 2. PCP adsorption in terms of soil texture was in the order of Clay>Loam>Sandy loam. 3. Although PCP adsorption in the $H_2O_2-treated$ soils decreased remarkably, it was not proportional to the humus contents. 4. The order of PCP adsorption in the exchangeable base-treated soils was H^+-exchanged soil>$K^+-soil$>$Na^+-soil$>$Ca^{++}-soil$>Mg^{++}-soil. 5. Langmuir's and Freundlich's adsorption isotherms were applicable to the PCP adsorption, and thereby were able to be calculated maximum adsortion amounts of PCP, bond energy, and the depths of adsorption layers. 6. Maximum adsorbed amounts of PCP were 212.14 mg/100gr in Clayey loam, 97.28 to 121.59mg/100gr in Loam, and 32.92 to 91.74mg/100gr in Sandy loam, respectively. 7. The depths of mixed layers of limiting application for fish-toxicity-free treatment were 0.88cm of the Jinchun soil, the shallowest and 4.29 cm of the Naesan-ri Sandy loam, the deepest.

  • PDF

$N_2O$ Emissions with Different Land-Use Patterns in a Basin (유역 내 토지이용도에 따른 $N_2O$ 배출양상)

  • Seo, Ju-Young;Kang, Ho-Jeong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.2
    • /
    • pp.86-90
    • /
    • 2012
  • The gaseous product of nitrogen cycle, nitrous oxide ($N_2O$) is a potent greenhouse gas whose Global Warming Potential (GWP) is about 300 times greater than $CO_2$. The dynamics of $N_2O$ emission are controlled by such environments and soil conditions. The main aim of this study is to investigate variations of $N_2O$ emission and its controlling factors with different land-use patterns in Haean basin. A forest, a radish field and a rice paddy were selected as three different land-use patterns. Their $N_2O$ emissions were measured every month during a growing season. We also collected soil samples with seasons and analyzed soil characteristics including inorganic nitrogen content. $N_2O$ emission was greatest at the radish field likely due to anthropogenic nitrogen addition by fertilization. Soils of forest and rice paddy also contained inorganic nitrogen originated from organic matter. However, the spatial variation was great and it looks that nitrogen cycle and $N_2O$ production were slower than that of radish field. Intensive observation and control of fertilization would be requiredto adjust $N_2O$ emission from agriculture soils.

Use of Phosphate Coated Urea to Decrease Ammonia Volatilization Loss from Direct Seeded Rice Field at Early Stage (건답(乾畓) 직파(直播) 논에서 초기(初期)의 암모니아 휘산(揮散) 경감(輕減)을 위한 인산(燐酸) 입힌 요소(尿素)의 효과(效果))

  • Jung, Yeong-Sang;Ha, Sang-Keun;Cho, Byung-Ok;Lee, Ho-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.1
    • /
    • pp.8-14
    • /
    • 1996
  • Use of phosphate coated urea to decrease ammonia volatilization from directly seeded paddy under dryland condition at early stage was tested. Effect on urea hydrolysis was investigated through laboratory study comparing with use of thiourea, a urease inhibitor, under different water content. A field measurement of volitilized ammonia with phosphate-glycerol ammonia absorber was conducted for surface treated urea, phosphate coated urea, phosphate coated slow-release fertilizer and organic fertilizer. Through laboratory study, hydrolysis rate of phosphate coated urea at three days after treatment was lower than that of urea, however, the rate after one week was same. Thiourea addition retarted urea hydrolysis. By field measurement, ammonia volatilization was effectively reduced by use of phosphate coated urea.

  • PDF

Salt Injury and Overcoming Strategy of Rice (수도의 염해와 대책)

  • 이승택
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.s02
    • /
    • pp.66-80
    • /
    • 1989
  • Salt injury in rice is caused mainly by the salinity in soil and in the irrigated water, and occasionaly by salinity delivered through typhoon from the sea. The salt concentration of rice plants increased with higher salinity in the soil of the rice growing. The climatic conditions, high temperature and solar radiation and dry conditions promote the salt absorption of rice plant in saline soil. The higher salt accumulation in the rice plant generally reduces the root activity and inhibits the absorption of minerals of rice plant, resulting the reduction of photosynthesis. The salt damages of rice plant, however, are different from different growth stage of rice plants as follows: 1. Germination of rice seed was slightly delayed up to 1.0% of salt concentration and remarkably at 1. 5%, but none of rice seeds were germinated at 2.5%. This may be due to the delayed water uptake of rice seeds and the inhibition of enzyme activity, 2. It was enable to establish rice seedlings at seed bed by 0.2% of salt concentration with some reduction of leaf elongation. The increasing of 0.3% salt concentration caused to the seedling death with varietal differences, but most of seedlings were death at 0.4% with no varietal differences. 3. Seedlings grown at the nursery over 0.1% salt, gradually reduced in rooting activity after transplanting according to increasing the salt concentration from 0.1% up to 0.3% of paddy field. However, the seedlings grown in normal seed bed showed no difference in rooting between varieties up to 0.1% but significantly different at 0.3% between varieties, but greatly reduced at 0.5% and died at last in paddy after transplanting. 4. At panicle initiation stage, rice plant delayed in heading by salt damage, at meiotic stage reduced in grains and its filling rate due to inhibition of glume and pollen developing, and salt damage at heading stage and till 3 weeks after heading caused to reduction of fertilization and ripening rate. In viewpoint of agricultural policy the overcoming strategy for salt injury is to secure sufficient water source. Irrigation and drainage systems as well as underground drainage is necessary to desalinize more effectively. This must be the most effective and positive way except cost. By cultural practice, growing the salt tolerant variety with high population could increase yield. The intermittent irrigation and fresh water flooding especially at transplanting and from panicle initiation to heading stage, the most sensitive to salt injury, is important to reduce the salt content in saline soil. During the off-cropping season, plough and rotavation with flooding followed by drainage, or submersion and drainage with groove could improve the desalinization. Increase of nitrogen fertilizer with more split application, and soil improvement by lime, organic matter and forign soil addition, could increase the rice yield. Shift of trans-planting is one of the way to escape from the salt injury.

  • PDF

Present Status and Prospect of Weed Control in Korea (우리나라의 잡초방제(雜草防除) 현황(現況)과 전망(展望))

  • Ahn, Soo-Bong
    • Korean Journal of Weed Science
    • /
    • v.1 no.1
    • /
    • pp.5-14
    • /
    • 1981
  • Weed is one of the problems in the crop land as well as in uncultivated land, raising the farm management costs. Therefore, the weed control is essential for effective agricultural management. The cost for weed control in Korea occupies on the average 27.6% of the total labor cost required. Agricultural policies since 1960 were transferring from yield increase due to land productivities to increase of income due to labor productivities. Therefore, the weed control by hand is also changed to weed control by chemicals. The weed control by chemicals has also brought about some side-effects and needs better, improved weed control methods. The present weed control situation and related problems were studied to present new approaches for agricultural development in the future. There were 458 species of weeds in 82 families which were growing in the crop land. The weeds to control, however, are 12 in paddy field and 9 in upland. So far weeds in paddy field are well under control, while weeds in upland are poorly controlled due to change in chemical efficiency and chemical damage in the upland. The administration, research and extension work for the efficient use of agricultural chemicals have been done by various institutions, such as Office of Rural Development, Office of Forestry, and chemical companies. The courses for agricultural chemicals were offered in the agricultural colleges. However, the efficiency of chemicals could not be maximized due to the poor relationships among related institutes. The newly established Agricultural Chemical Research Center at the Office of Rural Development and the Korean Weed Science Association are expected to contribute toward improving weed control in Korea. The Korean agriculture in the future will eventually be mechanized and the varieties resistant to high nitrogen application and to high plant density will be required for high yields. The rice will be transplanted earlier and the whole growing period will be extended. The application of organic matter will be increased for increasing soil fertility, and the use of agricultural chemicals will be continued. Under such a condition, the studies on the weed occurrence and its integrated control measures will be needed. Also weed controls in the newly exclaimed land, crop varieties, horticultural varieties, forage crops, and forests are also needed to study. Basic and practical researches for the weed control to improve the labor productivity will be also needed. In order to meet the all requirements for efficient weed control, weed control systems including all the academics, research and extension workers, administratives, farmers and companies should be established. Also securing researchers and education of personnels are pre-required and research funds for the chemical studies should be provided efficiently and timely.

  • PDF

Effect of Harvest Stage of Corn on Nutritive Values and Quality of Roll Baled Corn Silage Manufactured with Corn Grown in Paddy Land (논에서 생산된 옥수수의 수확시기가 곤포사일리지의 사료가치와 품질에 미치는 영향)

  • Choi, Ki-Choon;Jo, Nam-Chul;Jung, Min-Woong;Lee, Kyung-Dong;Kim, Jong-Geun;Lim, Young-Chul;Kim, Won-Ho;Oh, Yung-Keun;Choi, Jin-Hyuk;Kim, Cheon-Man;Jung, Du-Keun;Choi, Jong-Man
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.31 no.1
    • /
    • pp.65-74
    • /
    • 2011
  • This study was carried out to examine the effect of harvest stage of corn on nutritive values and quality of round baled corn silage manufactured with corn grown in paddy land of Department of Animal Resources Development, National Institute of Animal Science, RDA from 2009 to 2010. Corn "Kwangpyungok" was harvested at three different growth times (milk, yellow ripen and ripen stage) and ensiled at each harvest stages. Crude protein (CP) and TDN (total digestible nutrient) contents of round baled corn silage was decreased and in vitro dry matter digestibility (IVDMD) was not changed with delayed harvest maturity. However, contents of ADF (acid detergent fiber) and NDF(neutral detergent fiber) decreased with delayed harvest maturity. The pH at three different harvest stages ranged from 3.8 to 4.0. The content of lactic acid increased with delayed harvest maturity, but the content of acetic acid decreased. And then, flieg's score reveals that there is an increase in order, ripen stage > yellow ripen stage > milk stage. Therefore, this study suggest that round baled corn silage manufactured at yellow ripen stage can improve the silage quality.

Estimation of Soybean N Fraction Derived from N Sources by $^{15}N$ in Soybean Cultivation with Rye as Green Manure (호밀녹비 이용 시 중질소($^{15}N$)를 이용한 질소원 유래별 콩의 집적질소 분획추정)

  • Seo, Jong-Ho;Lee, Seong-Hee;Cho, Young-Son;Lee, Jae-Eun;Lee, Chung-Keun;Kwon, Young-Up
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.1
    • /
    • pp.50-57
    • /
    • 2008
  • Winter season cultivation of rye as green manure for soybean have been a favorite with farmer because it could remove a risk of injury by continuous cropping and increase N uptake and yield of soybean. Effects of rye green manure on soybean N uptake, $N_2$ fixation and yield were investigated with $^{15}N$ as pot experiment in greenhouse in 2004 and field in 2005, respectively. The N derived from N fertilizer ($^{15}N$) in rye green manure increased with increasing of N fertilizer rate compared to N derived from soil. N uptake and DM yield of soybean at the pot with paddy soil was higher than those at the pot with upland soil mainly due to the increase of N uptake from paddy soil. Total $^{15}N$ recovery in soil was higher at rye green manure than no green manure because $^{15}N$ applied to rye plant was remained highly as soil organic N compared to chemical N fertilizer. $^{15}N$ recovery in soybean plant increased in proportion to amounts of N fertilizer applied to rye. The N fractions from $N_2$ fixation of soybean plant at the pot experiment in 2004 ranged from 92% to 95%, on the other hand those in field experiment in 2005 ranged from 82% to 84%. Estimation of amount of $N_2$ fixation was not different between Difference method and $^{15}N$ method in 2004 and 2005.