DOI QR코드

DOI QR Code

$N_2O$ Emissions with Different Land-Use Patterns in a Basin

유역 내 토지이용도에 따른 $N_2O$ 배출양상

  • Seo, Ju-Young (Department of Civil and Environmental Engineering, Yonsei University) ;
  • Kang, Ho-Jeong (Department of Civil and Environmental Engineering, Yonsei University)
  • 서주영 (연세대학교 토목환경공학과) ;
  • 강호정 (연세대학교 토목환경공학과)
  • Received : 2012.01.25
  • Accepted : 2012.02.24
  • Published : 2012.02.29

Abstract

The gaseous product of nitrogen cycle, nitrous oxide ($N_2O$) is a potent greenhouse gas whose Global Warming Potential (GWP) is about 300 times greater than $CO_2$. The dynamics of $N_2O$ emission are controlled by such environments and soil conditions. The main aim of this study is to investigate variations of $N_2O$ emission and its controlling factors with different land-use patterns in Haean basin. A forest, a radish field and a rice paddy were selected as three different land-use patterns. Their $N_2O$ emissions were measured every month during a growing season. We also collected soil samples with seasons and analyzed soil characteristics including inorganic nitrogen content. $N_2O$ emission was greatest at the radish field likely due to anthropogenic nitrogen addition by fertilization. Soils of forest and rice paddy also contained inorganic nitrogen originated from organic matter. However, the spatial variation was great and it looks that nitrogen cycle and $N_2O$ production were slower than that of radish field. Intensive observation and control of fertilization would be requiredto adjust $N_2O$ emission from agriculture soils.

아산화질소($N_2O$)는 온실효과가 $CO_2$의 300배 이상 되는 강력한 온실기체로서, 주로 탈질, 질산화와 같은 토양의 질소순환과정에서 생성되고 토양의 환경에 따라 복잡한 발생 양상을 보이는 것으로 알려져 있다. 본 연구는 하나의 유역 내에서 토지이용도에 따른 $N_2O$ 발생량의 변이와 이를 조절하는 요인을 밝히기 위한 목적으로 수행하였다. 이를 위해 강원도 해안 분지지형 내에 산림과 밭, 논 세 종류의 토지이용 형태를 선정하여, 2010년 5월부터 10월까지 매월 $N_2O$ 발생량을 측정하였다. 또한 계절 별 토양을 채취하여 무기질소의 함량을 비롯한 이화학적인 분석을 시행하였다. 그 결과 $N_2O$는 밭에서 많이 발생하였고, 이는 시비에 의한 질소의 유입 때문으로 분석되었다. 산림과 논 토양에서는 유기물로부터 유래한 무기질소가 존재하나, 그 공간적 편차가 크고 질소순환이 빠르게 진행되지 않아 $N_2O$ 발생량이 크지 않은 것으로 보인다. 토양의 $N_2O$ 발생량을 조절하기 위해서는 시비의 강도와 시점에 대한 관찰과 조절이 중요할 것으로 사료된다.

Keywords

References

  1. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M. and Miller, H.,IPCC, 2007: Climate change 2007: The physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change, New York: Cambridge University Press(2007).
  2. Galloway, J. N., Schlesinger, W. H., Hiram Levy, I., Michaels, A. and Schnoor, J. L., "Nitrogen fixation: anthropogenic enhancement-environmental response," Global Biogeochemical Cycles, 9(2), 235-252(1995). https://doi.org/10.1029/95GB00158
  3. Hofmann, D., Butler, J., Dlugokencky, E., Elkins, J., Masarie, K., Montzka, S. and Tans, P., "The role of carbon dioxide in climate forcing from 1979 to 2004: introduction of the Annual Greenhouse Gas Index," Tellus Series B: Chemical and Physical Meteorology, 58, 614-619(2006). https://doi.org/10.1111/j.1600-0889.2006.00201.x
  4. 송근예, 강호정, "실험실 조건에서 소택지, 연못형 습지의 영암염류 제거효율 평가," 한국습지학회지, 7(4), 43-50(2005).
  5. 김유리, 김현기, 김동진, "하수처리 : 질산화/탈질 화분 반응기에서의 질소제거 및 $N_2O$ 발생 특성," 공동 추계학술발표회, 한국물환경학회지, pp. 799-800(2009).
  6. Searle, P. L., "The berthelot or indophenol reaction and its use in the analytical chemistry of nitrogen. A review," Analyst, 109(5), 549-568(1984). https://doi.org/10.1039/an9840900549
  7. Anderson, J. M. and Ingram, J. S. I., "Tropical soil biology and fertility: a handbook of methods," 2nd ed., Oxford University Press, USA(1993).
  8. Schlesinger, W. H.,Biogeochemistry: an analysis of global change, 2nd ed., Academic Press, London, UK(1997).
  9. Bremner, J.. "Sources of nitrous oxide in soils," Nutrient Cycling in Agroecosystems, 49(1), 7-16(1997). https://doi.org/10.1023/A:1009798022569
  10. Kool, D. M., Dolfing, J., Wrage, N. and Van Groenigen, J. W., "Nitrifier denitrification as a distinct and significant source of nitrous oxide from soil," Soil Biology and Biochemistry, 43(1), 174-178(2011). https://doi.org/10.1016/j.soilbio.2010.09.030
  11. Paul, E. A. and Clark, F. E., "Soil microbiology and biochemistry," 2nd ed., Academic Press, San Diego, California(1996).
  12. Goldberg, S. D. and Gebauer, G., "Drought turns a Central European Norway spruce forest soil from an $N_2O$ source to a transient $N_2O$ sink," Global Change Biology, 15(4), 850- 860(2009). https://doi.org/10.1111/j.1365-2486.2008.01752.x
  13. Hou, A. X., "Methane and nitrous oxide emissions from a rice field in relation to soil redox and microbiological processes," Soil Sci. Soc. of Am. J., 64(6), 2180-2486(2000). https://doi.org/10.2136/sssaj2000.6462180x
  14. Bouwman, A. F., Boumans, L. J. M. and Batjes, N. H., "Emissions of $N_2O$ and NO from fertilized fields: Summary of available measurement data," Global Biogeochemecal Cycles, 16(4), 1058-1070(2002).

Cited by

  1. Simulation of the GHG Emissions Impact on Climate Change from Radish Field vol.57, pp.4, 2015, https://doi.org/10.5389/KSAE.2015.57.4.101