• Title/Summary/Keyword: Organic Carbon

Search Result 3,030, Processing Time 0.026 seconds

Degradation of Phenanthrene and Pyrene by Burkholderia sp. D5 (Burkholderia sp. D5에 의한 phenanthrene과 pyrene 분해)

  • Kim, Tae-Jeong;Jo, Gyeong-Suk;Ryu, Hui-Uk
    • Korean Journal of Microbiology
    • /
    • v.39 no.4
    • /
    • pp.267-271
    • /
    • 2003
  • Burkholderia sp. D5, a polyaromatic hydrocarbons(PAHs)-degrading bacterium, was isolated from oil-contaminated soil. The bacterium could utilize phenanthrene (Phe) as a sole carbon source but could not use pyrene (Pyr). However, the strain could degrade Pyr when a cosubstrate such as yeast extract (YE) was supplemented. The PAH degradation rate of the bacterium was enhanced by the addition of other organic materials such as YE, peptone and glucose. YE was a particularly effective additive in stimulating cell growth as well as PAH degradation. When 1 g-YE/L was supplemented into the basal salt medium (BSM) with 215 mg-Phe/L, the specific growth rate (0.28 h-1) and Phe-degrading rate (29.30 μmol/L/h) were enhanced approximately ten and two times more than those obtained in the BSM with 215 mg-Phe/L, respectively. Through kinetic analysis, the maximum specific growth rate (μmax) and PAH degrading rate (Vmax) for Phe were obtained as 0.34/h and 289 ${\mu}mol$/L/h, respectively. Also, μmax and Vmax for Pyr were 0.27 h-1 and 50 ${\mu}mol$/L/h, respectively. The degradation rates for each Phe (2.20 μmol/L/h) and Pyr (2.18 μmol/L/h) were lower in mixture substrates than in a single substrate (29.30 ${\mu}mol$/L/h and 9.58 ${\mu}mol$/L/h, respectively). Burkholderia sp. D5 can degrade Phe and Pyr contained in soil, and the PAH degradation rates in soil were 20.03 ${\mu}mol$/L/h for Phe and 1.09 ${\mu}mol$/L/h for Pyr.

Comparison of Plant Community Structures in Cut and Uncut Areas at Burned Area of Mt. Gumo-san (금오산(金烏山)의 산화지(山火地)에서 벌목지(伐木地)와 비벌목지(非伐木地)의 식물(植物) 군집구조(群集構造) 비교(比較))

  • Che, Sang-Hoon;Kim, Woen
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.4
    • /
    • pp.509-520
    • /
    • 1997
  • This is a report on the early vegetation, plant community structure, and secondary succession of cut and uncut sites of burned areas in Mt. Gumo-sun. The forest fire occurred on April, 1994 and the pine forest and its floor vegetation were burned down. The investigation was carried out from April, 1995 to October, 1996. The results are summarized as follows : The floristic composition of cut and uncut sites of burned area and unburned area were composed of 32, 36, and 34 kinds of vascular plants respectively. The biological spectra showed the $H(G)-D_1-R_5-e$ type, $H(M)-D_1-R_5-e$ and $M(N)-D_1-R_5-e$ in cut, uncut, and unburned site respectively. The dominant species based on $SDR_3$ of the cut site were Miscanthus sinensis var. purpurascens(100.00). Caret humilis(52.27), Quercus serrata(51.19) and Lysimachia clethroides(39.40), however, in the uncut sites the dominant species were Quercus acutissima(56.91), Pinus densiflora(26.83) in the tree layer, Quercus serrata(50.43), Lindera glauca(40.51), Lespedeza bicolor(37.85) in the shrub layer, and Miscanthus sinensis var. purpurascens(72.27), Pteridium aquilium var. latiusculum(60.92), Carex humilis(63.63) in the herb layer. Pinus densiflora(99.88), Miscanthus sinensis var. purpurascens(82.74), Quercus serrata(77.47) and Carex humilis(74.02) were dominant in the unburned site. The species diversity(H) and evenness index(e) were 1.05, 0.70 and 1.32, 0.85 in the cut and uncut site, respectively and 0.22, 0.63 in the unburned site. Dominance index(C) was 0.15, 0.06 and 0.96 in the cut, uncut site and unburned site, respectively. Degree of succession(DS) was 345.19, 747.47 and 674.34 in cut, uncut and unburned site, respectively. The index of similarity(CCs) was 0.66 between cut and uncut sites, 0.50 between unburned and cut sites and 0.61 between unburned and uncut sites. The amount of exchangeable sodium, calcium, magnesium and soil pH were increased, but the amount of organic matter, available phosphous, total nitrogen, total carbon and exchangeable potassium were decreased in cut site after fire.

  • PDF

Electrochemical Characterization of Anti-Corrosion Film Coated Metal Conditioner Surfaces for Tungsten CMP Applications (텅스텐 화학적-기계적 연마 공정에서 부식방지막이 증착된 금속 컨디셔너 표면의 전기화학적 특성평가)

  • Cho, Byoung-Jun;Kwon, Tae-Young;Kim, Hyuk-Min;Venkatesh, Prasanna;Park, Moon-Seok;Park, Jin-Goo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.1
    • /
    • pp.61-66
    • /
    • 2012
  • Chemical Mechanical Planarization (CMP) is a polishing process used in the microelectronic fabrication industries to achieve a globally planar wafer surface for the manufacturing of integrated circuits. Pad conditioning plays an important role in the CMP process to maintain a material removal rate (MRR) and its uniformity. For metal CMP process, highly acidic slurry containing strong oxidizer is being used. It would affect the conditioner surface which normally made of metal such as Nickel and its alloy. If conditioner surface is corroded, diamonds on the conditioner surface would be fallen out from the surface. Because of this phenomenon, not only life time of conditioners is decreased, but also more scratches are generated. To protect the conditioners from corrosion, thin organic film deposition on the metal surface is suggested without requiring current conditioner manufacturing process. To prepare the anti-corrosion film on metal conditioner surface, vapor SAM (self-assembled monolayer) and FC (Fluorocarbon) -CVD (SRN-504, Sorona, Korea) films were prepared on both nickel and nickel alloy surfaces. Vapor SAM method was used for SAM deposition using both Dodecanethiol (DT) and Perfluoroctyltrichloro silane (FOTS). FC films were prepared in different thickness of 10 nm, 50 nm and 100 nm on conditioner surfaces. Electrochemical analysis such as potentiodynamic polarization and impedance, and contact angle measurements were carried out to evaluate the coating characteristics. Impedance data was analyzed by an electrical equivalent circuit model. The observed contact angle is higher than 90o after thin film deposition, which confirms that the coatings deposited on the surfaces are densely packed. The results of potentiodynamic polarization and the impedance show that modified surfaces have better performance than bare metal surfaces which could be applied to increase the life time and reliability of conditioner during W CMP.

A Study on Artificial Radionuclides(134Cs, 137Cs and 239+240Pu) Distribution in the Sediment from Lake Euiam (의암호 퇴적물 내 인공방사성동위원소 (134Cs, 137Cs, 239+240Pu) 분포특성 연구)

  • Kim, Seung Hwan;Lee, Sang-Han;Oh, Jung Suk;Choi, Jong Ki;Kang, Tae Gu
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.4
    • /
    • pp.223-230
    • /
    • 2015
  • The objective of this study is to identify the radionuclide distribution in public water by carrying out the analysis of artificial radionuclides($^{134}Cs$, $^{137}Cs$, $^{239+240}Pu$), natural radionuclide($^{210}Pb$) and TOC in the lake Euiam sediment in Chuncheon, South Korea. The $^{134}Cs$ concentration in all lake sediments showed below MDA values, and the $^{137}Cs$ concentration in lake sediment were ranged from MDA to $8.79Bq{\cdot}kg^{-1}-dry$. The $^{137}Cs$ concentrations in surface sediment were reported to be 2.4 to $4.2Bq{\cdot}kg^{-1}-dry$. The lowest concentration of $^{137}Cs$ was reported at St. 4 and the highest concentration was reported at St. 3, respectively. The $^{239+240}Pu$ concentration in lake sediment were ranged from 0.049 to $0.47Bq{\cdot}kg^{-1}-dry$. The lowest concentration was reported at St. 2 and the highest concentration was reported at St. 3. The correlation(r) between the $^{239+240}Pu$ concentration and $^{137}Cs$ concentration in lake sediment presented higher values (0.54 to 0.97) and this suggests the behavior and origin of $^{137}Cs$ is identical to the $^{239+240}Pu$ in the sediment. The $^{134}Cs$ concentration below MDA value and the $^{239+240}Pu/^{137}Cs$ ratio(mean value of 0.041) indicated that the artificial radionuclides in the sediment were originated from global fallout by the atmospheric testing of nuclear weapons conducted by former USSR and U.S.A, but not from the Fukushima Daiichi NPP accident. The sedimentation rate derived from $^{210}Pb$ age-dating method at St. 2 is calculated to be $0.31{\pm}0.06cm{\cdot}y^{-1}$. This value is similar to the value ($0.41{\pm}0.05cm{\cdot}y^{-1}$) estimated from the $^{137}Cs$ maximum peak produced from early 1960's. The content of TOC in lake Euiam sediments varied from 0.20 to 13.01%. While the highest correlation between TOC and $^{137}Cs$ concentration in the sediment were found at St. 1, the others presented the low correlation.

Plasma-assisted Catalysis for the Abatement of Isopropyl Alcohol over Metal Oxides (금속산화물 촉매상에서 플라즈마를 이용한 IPA 저감)

  • Jo, Jin Oh;Lee, Sang Baek;Jang, Dong Lyong;Park, Jong-Ho;Mok, Young Sun
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.375-382
    • /
    • 2014
  • This work investigated the plasma-catalytic decomposition of isopropyl alcohol (IPA) and the behavior of the byproduct compounds over monolith-supported metal oxide catalysts. Iron oxide ($Fe_2O_3$) or copper oxide (CuO) was loaded on a monolithic porous ${\alpha}-Al_2O_3$ support, which was placed inside the coaxial electrodes of plasma reactor. The IPA decomposition efficiency itself hardly depended on the presence and type of metal oxides because the rate of plasma-induced decomposition was so fast, but the behavior of byproduct formation was largely affected by them. The concentrations of the unwanted byproducts, including acetone, formaldehyde, acetaldehyde, methane, carbon monoxide, etc., were in order of $Fe_2O_3/{\alpha}-Al_2O_3$ < $CuO/{\alpha}-Al_2O_3$ < ${\alpha}-Al_2O_3$ from low to high. Under the condition (flow rate: $1L\;min^{-1}$; IPA concentration: 5,000 ppm; $O_2$ content: 10%; discharge power: 47 W), the selectivity towards $CO_2$ was about 40, 80 and 95% for ${\alpha}-Al_2O_3$, $CuO/{\alpha}-Al_2O_3$ and $Fe_2O_3/{\alpha}-Al_2O_3$, respectively, indicating that $Fe_2O_3/{\alpha}-Al_2O_3$ is the most effective for plasma-catalytic oxidation of IPA. Unlike plasma-alone processes in which tar-like products formed from volatile organic compounds are deposited, the present plasma-catalyst hybrid system did not exhibit such a phenomenon, thus retaining the original catalytic activity.

Collection, Identification and Hepatic Effect of Native Cordyceps militaris (새로운 번데기 동충하초의 수집, 동정 및 간기능에 미치는 효과)

  • Lee, Ki-Won;Nam, Byung-Hyouk;Jo, Wool-Soon;Oh, Su-Jung;Kang, Eun-Young;Cui, Yong;Lee, Jae-Yun;Cheon, Sang-Cheol;Jeong, Min-Ho;Lee, Jae-Dong
    • The Korean Journal of Mycology
    • /
    • v.34 no.1
    • /
    • pp.7-14
    • /
    • 2006
  • Entomopathogenic fungus Cordyceps militaris is famous for its medicinal efficacies. It has been reported to have various pharmacological activities such as anti-tumour, insecticidal, antibacterial, immunomodulatory and antioxidant. In this study, we investigated the effect of the extract of C. militaris (MPUN8501), which was identified by the analysis of the nucleotide sequences of 5.8S ribosomal RNA, on the function of liver. C. militaris powder was extracted using hot water extracts method as time, volume and temperature and using method as differential polarity of organic solvent. Each fraction was tested for the improvement of hepatic enzyme alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) activity. The BuOH extracts (CME) had highest activity which was used for the test of toxicity and efficacy of C. militaris. The enhancing effect of CME on the activity of ADH and ALDH was much more than medicine, drink, natural tea etc. Thus CME promoted the resolution of alcohol and acetaldehyde in rats, inducing recovery to normal condition rapidly. Furthermore, oral administration of CME effectively protected the carbon tetrachloride-induced acute hepatic injury as revealed by the hematological parameters (levels of sGOT and sGPT) and histological observation. CME was ascertained to be safe by regulatory toxicity studies of single dose toxicity and genotoxicity. These results suggest that CME would be useful for the maintaining normal hepatic activity as a functional health food.

Bioleaching of Mn(II) from Manganese Nodules by Bacillus sp. MR2 (Bacillus sp. MR2에 의한 망간단괴의 생물용출)

  • Choi, Sung-Chan;Lee, Ga-Hwa;Lee, Hong-Keum
    • Korean Journal of Microbiology
    • /
    • v.45 no.4
    • /
    • pp.411-415
    • /
    • 2009
  • Some microorganisms are capable of leaching Mn(II) from nonsulfidic manganese ores indirectly via nonenzymatic processes. Such reductive dissolution requires organic substrates, such as glucose, sucrose, or galactose, as a source of carbon and energy for microbial growth. This study investigated characteristics of Mn(II) leaching from manganese nodules by using heterotrophic Bacillus sp. strain MR2 provided with corn starch as a less-expensive substrate. Leaching of Mn(II) at 25.6 g Mn(II) $kg^{-1}$ nodule $day^{-1}$ was accompanied with cell growth, but part of the produced Mn(II) re-adsorbed onto residual $MnO_2$ particles after 24 h. Direct contact of cells to manganese nodule was not necessary as a separation between them with a dialysis tube produced similar amount [24.6 g Mn(II) $kg^{-1}$ nodule $day^{-1}$]. These results indicated an involvement of extracellular diffusible compound(s) during Mn(II) leaching by strain MR2. In order to optimize a leaching process we tested factors that influence the reaction, and the most efficient conditions were $25\sim35^{\circ}C$, pH 5~7, inoculum density of 1.5~2.5% (v/v), pulp density of 2~3 g/L, and particle size <75 ${\mu}m$. Although Mn(II) leaching was enhanced as particle size decrease, we suggest <212 ${\mu}m$ as a proper size range since more grinding means more energy consumption The results would help for the improvement of bioleaching of manganese nodule as a less expensive, energy-efficient, and environment-friendly technology as compared to the existing physicochemical metal recovery technologies.

The Growth and Physiological Responses of Cacalia firma Seedlings by Shading Conditions in Forest Farming (임간재배 시 병풍쌈 유묘의 차광처리별 생장 및 생리 반응)

  • Yoon, Jun Hyuck;Jeon, Kwon Seok;Song, Ki Seon;Park, Yong Bae;Moon, Yong Sun;Lee, Do Hyung
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.1
    • /
    • pp.65-71
    • /
    • 2014
  • Cacalia firma is a perennial plant in Asteraceae, Parasenecio that distributed in Korea, China, and Japan. As dietary style changes for well-being life, consumer's demand of functional food and organic vegetables is getting increased. This study was conducted to investigate the optimum light conditions of P. firmus in forest farming. One year old seedlings were grown under four different light conditions 10%, 20%, 30%, and 50% of sunlight by shading (equals 50%, 30%, 20%, and 10% relative brightness respectively) and non-treated control under full sunlight. They were analyzed for early growth and physiological response. Seedlings grown under 75% shading showed similar height, root growth, and leaf water content to control. However, their leaf length, width, and total leaf area were increased, which caused increased leaf dry weight and total dry weight. Especially, seedlings under 95% shading showed 40% increase in height and more leaf growth and leaf water content, although they had shorter main root length and root collar diameter than control. In addition specific leaf area (SLA) and leaf area ratio (LAR) were higher than control and indicated that they were statistically significant difference from control. Higher SLA refers thinner leaf thickness, higher LAR means larger leaf area. The results indicate seedlings under 95% shading have higher water content, thinner leaf, and wider lightinterception areas. It is plausible that P. firmus is active in chlorophyll activities and carbon dioxide assimilation at even lower light conditions. These results suggest that the optimum light level of P. firmus for artificial cultivation in forest farming ranges from 75~95% shading (20%-10% of relative brightness). When salability as 'sanchae' (wild edible greens) is considered, P. firmus could be cultivated under 75% shading in forest farming and expected to have better taste and higher yield. We suggest these results as basic data of P. firmus for possible forest farming.

Brucite Treatment to Reduce Phosphorus Release from Polluted Sediments (퇴적물로부터 인 용출 저감을 위한 Brucite 처리)

  • Lee, Mi-Kyung;Choi, Kwang-Soon;Kim, Sea-Won;Oh, Young-Taek;Kwon, Hyuck-Jae;Kim, Dong-Sup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.11
    • /
    • pp.1180-1185
    • /
    • 2006
  • Lab-scale batch experiments using several 25-L transparent acrylic reactors were conducted to develop optimum capping materials that can reduce phosphorus released from polluted sediments. The sediment used in the experiment was very fine clay(8.8 $\Phi$ in mean grain size), and organic carbon($C_{org}$) content was as high as 2%. Four kinds of batches with different capping materials Brucite($Mg(OH)_2$), Sea sand($SiO_2$), Granular-gypsum($CaSO_4{\cdot}2H_2O$), Double layer(brucite+sand), and one control batch were operated for 30 days. Phosphorus fluxes released from bottom sediments in the control batch were estimated to be 14.6 $mg{\cdot}m^{-2}{\cdot}d^{-1}$, while 9.5 $mg{\cdot}m^{-2}{\cdot}d^{-1}$, 5.2 $mg{\cdot}m^{-2}{\cdot}d^{-1}$, 4.2 $mg{\cdot}m^{-2}{\cdot}d^{-1}$, and 3.1 $mg{\cdot}m^{-2}{\cdot}d^{-1}$ in the batch capped with Sea sand, Granular-gypsum, Double layer, and Brucite, respectively. The results obtained from lab-scale batch experiments show that there were 70% reduction of phosphorus for some materials such as Brucite, Double layer(brucite+sand), and whereas sea sand only about 35%. The pH range of surface sediment to which Brucite was applied showed about $8.0{\sim}9.5$ in the weak alkaline state. This effect can prevent liberation of $H_2O$. The addition of gypsum into the sediment can reduce the progress of methanogenesis because of fast early diagenesis and sufficient supply of $SO_4^{2-}$ to the sediments, stimulate the SRB highly. Therefore, the application of Brucite and Gypsum can reduce phosphorus release from the sediment as a result of formation of $Mg_5(OH)(PO_4)_3$, pyrite($FeS_x$), and apatite-mineral.

Persistence of Fungicide Pencycuron in Soils (토양 중 살균제 Pencycuron의 잔류 특성)

  • An, Xue-Hua;An, Wen-Hao;Im, Il-Bin;Lee, Sang-Bok;Kang, Jong-Gook
    • The Korean Journal of Pesticide Science
    • /
    • v.10 no.4
    • /
    • pp.296-305
    • /
    • 2006
  • The adsorption and persistence of pencycuron {1-(4-chlorobenzyl) cyclopentyl-3-phenylurea} in soils were investigated under laboratory and field conditions to in order to assess the safety use and environmental impact. In the adsorption rate experiments, a significant power function of relation was found between the adsorbed amount of pencycuron and the shaking time. Within one hour following the shaking, the adsorption amounts in the SCL and the SiCL were 60 and 65% of the maximum adsorption amounts, respectively. The adsorption reached a quasi-equilibrium 12 hours after shaking. The adsorption isotherms followed the Freundlich equation. The coefficient (1/n) indicating adsorption strength and degree of nonlinearity was 1.45 for SCL and 1.68 to SiCL. The adsorption coefficients ($K_d$) were 2.31 for SCL and 2.92 to SiCL, and the organic carbon partition coefficient, $K_{oc}$, was 292.9 in SCL and 200.5 inSiCL. In the laboratory study, the degradation rate of pencycuron in soils followed a first-order kinetic model. The degradation rate was greatly affected by soil temperature. As soil incubation temperature was increased from 12 to $28^{\circ}C$, the residual half life was decreased from 95 to 20 days. Arrhenius activation energy was 57.8 kJ $mol^{-1}$. Furthermore, the soil moisture content affected the degradation rate. The half life in soil with 30 to 70% of field moisture capacity was ranged from 21 to 38 days. The moisture dependence coefficient, B value in the empirical equation was 0.65. In field experiments, the half-life were 26 and 23 days, respectively. The duration for period of 90% degradation was 57 days. The difference between SCL and SiCL soils varied to pencycuron degradation rates were very limited, particularly under the field conditions, even though the characteristics of both soils are varied.