• Title/Summary/Keyword: Organic Carbon

Search Result 3,040, Processing Time 0.032 seconds

Effect of Long-term Organic Matter Application on the Fine Textured Paddy Soils of Double Cropping System in Temperate Area (난지(暖地) 2모작(毛作) 세입질(細粒質) 논에서 유기물(有機物)의 연용(連用) 효과)

  • Yoo, Chul-Hyun;So, Jae-Don;Ida, Akira;Tanaka, Fukuyo;Nishida, Mizuhiko
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.4
    • /
    • pp.325-333
    • /
    • 1992
  • An investigation was carried out to find out the effects of long-term application (14 and 28 years) of rice straw, compost and wheat straw on changes in soil chemical and physical properities, aspests of releasing potential nitrogen and nitrogen uptake by rice and maize from fine textured paddy soils with double cropping system in warm temperate area. The result obtained were summarized as follows : 1. The long-term application of organic matters improved plow layer and soil physical properties : bulk density and solid phase were decreased, while porosity and gaseous phase were decreased. 2. Average increment of total carbon per year was 0.0371% and 0.0407% for rice straw and compost, respectively, from 1 through 14 years ; it was 0.0007% and 0.0014% for the rice straw and compost, respectively, from 15 years through 28 years. The average increment of total notrogen per year was 0.0025% and 0.038% for the rice straw and compost, respectively, from 1 through 14 years ; 0.0014% and 0.0024% for the same treatments from 15 through 28 years. 3. $NH_4-N$ and amide-N were high in the soils with wheat straw application for 28 years ; the amino sugar-N in the soils with compost application for 28 years ; amino acid -N in the soils with rice straw application for 14 and 28 years ; and unidentified-N, in the control. 4. The released amount of available nitrogen with the submerged condition was higher at $30^{\circ}C$ than at $25^{\circ}C$ during the incubation. The amount of released available nitrogen at the field was aproximately same as that of $25^{\circ}C$ incubation. However, the released amounts from the incubation and the field were always lower than those extracted with reagents. 5. The amount of nitrogen uptake by rice and maize was highly correlated with available nitrogen extracted with phosphate buffer(pH 7.0). 6. The ratio of yield increase(milled rice) was 17, 12 and 7%, respectively, by application of rice straw, compost and wheat straw for 28 years, and 11% by application of rice straw for 14 years.

  • PDF

Capping Treatment for the Reduction of Phosphorus Release from Contaminated Sediments of Lakes (호소퇴적물로부터 인 용출 저감을 위한 Capping 처리)

  • Kim, Seog-Ku;Lee, Mi-Kyung;Ahn, Jae-Hwan;Yun, Sang-Leen;Kim, So-Jung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.4
    • /
    • pp.438-446
    • /
    • 2006
  • A lab-scale batch test was conducted to develop capping materials to reduce the sediment phosphorus in the stagnant water zone of Gyeongancheon in Paldang Lake. The mean grain size(Mz) of sediment in the investigated area was 7.7 ${\phi}$, which is very fine, and the contents of organic carbon($C_{org}$) was 2.4%, which is very high. For the phosphorous release experiment to select the optimal capping material, sand layer, powder-gypsum($CaSO_4{\cdot}2H_2O$), granule-gypsum, complex layer(gypsum+sand) and the control were compared and evaluated in the 150 L reactor for 45 days. In case of the capping with the sand, it was found that the phosphorous from the sediment could be reduced by around 50%. However, it was found that this caused the reduction of the dissolved oxygen in the water column(by less than 3 mg/L) due to the resuspension of sediment and the organic matter decomposition that comes from the generation of $CH_4$ gas in the 1 cm of the sand layer. Therefore, it is likely that the sand layer has to be thickener in case of the sand capping. Powder-gypsum and granule-Gypsum reduced phosphorous release by more than 80%. However, the concentration of ${SO_4}^{2-}$ in the water column increased, making it difficult to apply it to the drinking water protection zone. We developed Fe-Gypsum and $SiO_2$-gypsum materials to reduce the solubility of ${SO_4}^{2-}$. Powder-Gypsum creates the interception film that does not have any aperture on the sediment layer when it is combined with the water. However phosphorous release caused by the generation of $CH_4$ gas may happen at a time when the gypsum layer has the crack. Capping through the complex layer(granule-Gypsum+sand(1 cm)) found to be suitable for the drinking water protection zone because it was effective to prevent phosphorus release. Moreover, this leads to the lower solubility from the concentration of ${SO_4}^{2-}$ into the water column than the powder-Gypsum and granule-Gypsum. The addition of gypsum($CaSO_4{\cdot}2H_2O$) into the sediment can reduce the progress of methanogensis because fast early diagenesis and sufficient supply of ${SO_4}^{2-}$ to the sediment, stimulate the SRB(sulfate reducing bacteria) highly.

Effects of the Recirculation Port Location on Treatment Efficiency of an Anaerobic Hybrid Reactor Consisted of a Fluidized Bed and a Packed Bed (유동상과 충전상이 결합된 혐기성 혼성 반응조에서 순환수의 인출지점이 처리효율에 미치는 영향)

  • Kim, Seong-Yong;Park, Soo-Young;Cho, Kwang-Myeung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.11
    • /
    • pp.1935-1944
    • /
    • 2000
  • This research was performed to investigate the effects of the location of recirculation port on the wastewater treatment efficiency of an anaerobic hybrid reactor consisted of a fluidized bed and a packed bed. The recirculation port was located either at the top of the packed bed (Reactor 2) or above the fluidized bed (Reactor 1). Media for the fluidized bed and the packed bed were granular activated carbon and Pall ring-type plastic media. respectively. At organic loading rates(OLR) up to $6.2kg\;COD/m^3-day$. Reactor 2 showed somewhat better performance than Reactor 1 with COD removal efficiencies of 85.0-95.2%. The COD removal efficiencies of the reactors drastically deteriorated at OLRs above $6.2kg\;COD/m^3-day$, and the tendency was more severe for Reactor 1 than for Reactor 2. Eventhough the two reactors showed similar effluent SS concentrations at OLRs below $3.6kg\;COD/m^3-day$, Reactor 2 showed higher effluent SS concentrations than Reactor 1 at OLRs above $5.3kg\;COD/m^3-day$. Reactor 2 was stabler than Reactor 1 with a methane production rate of $5.5kg\;COD/m^3$-day at the OLR of $13.3kg\;COD/m^3-day$. An abrupt increase in effluent volatile acid concentration was observed at the OLR of $6.2kg\;COD/m^3-day$ for Reactor 1 and $7.1kg\;COD/m^3-day$ for Reactor 2. and the increase was greater in Reactor 1. In conclusion. the range of OLR for adequate treatment in the hybrid reactor was determined according to the location of the internal recirculation port. It is more desirable for higher OLRs to locate the recirculation port at the top of the packed bed in order to utilize the whole volume of the reactor.

  • PDF

Review of the study on the surfactant-induced foliar uptake of pesticide (계면활성제에 의해 유도되는 농약의 엽면 침투성 연구 현황)

  • Yu, Ju-Hyun;Cho, Kwang-Yun;Kim, Jeong-Han
    • The Korean Journal of Pesticide Science
    • /
    • v.6 no.1
    • /
    • pp.16-24
    • /
    • 2002
  • Research trends in the measurement of foliar uptake of pesticides and the recently proposed action mechanism of the surfactant-induced uptake of pesticides were reviewed with the related reports and studies. Major techniques used in those fields are bioassay, radiotracer techniques with leaves or cuticular membrane. Recently, a new method using Congo Red as a tracer was proposed. The limiting factor in the pesticides uptake into leaves is the waxy layer which consists of the epicuticular and cuticular wax. Physico-chemical parameters such as molar volume, water solubility and partition coefficient of pesticides have limited influences on the pesticide uptake into leaves. Polydisperse ethoxylated fatty alcohol surfactants are well known as the good activator for many pesticides. It is now generally agreed that uptake activation is not related to the intrinsic surface active properties of surfactants such as surface activity, solvent property, humectancy and critical micelle concentration. Recent studies using ESR-spectroscopy revealed that the surfactants have an unspecific plasticising effect on the molecular structure of the wax and cuticular matrix, leading to increased mobilities of pesticides. Penetration of surfactants into waxy layer altered the pesticide mobility in wax and the partition coefficient of pesticide, and then the pesticides penetration into leaves was enhanced temporally. The enhancing effect of surfactant could be significantly different depending on the carbon number of aliphatic moiety and the number of ethoxy group in polyoxyethylene chain of surfactants. It is suggested that the rate of penetration of surfactants should have a significant relationship with the rate of penetration of pesticides.

Enhancement of Fermentative Hydrogen Production by Gas Sparging (기체 sparging에 의한 수소 발효의 효율 향상)

  • Kim, Dong-Hoon;Han, Sun-Kee;Kim, Sang-Hyoun;Bae, Byung-Uk;Shin, Hang-Sik
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.12 no.1
    • /
    • pp.49-57
    • /
    • 2004
  • The effect of gas sparging on continuous fermentative $H_2$ production was investigated using external gases ($N_2$, $CO_2$) with various flow rates (100, 200, 300, 400 ml/min). Gas sparging showed a higher $H_2$ yield than no sparging, indicating that the decrease of $H_2$ partial pressure by gas sparging had a good effect on $H_2$ fermentation. Especially, $CO_2$ sparging was more effective in the reactor performance than $N_2$ sparging. The composition of butyrate, the main metabolic product of $H_2$ fermentation by Clostridium sp., was much higher in $CO_2$ sparging. $H_2$ production increased with increasing flow rate only in $CO_2$ sparging. The best performance was obtained by $CO_2$ sparging at 300 ml/min, resulting in the highest $H_2$ yield of 1.65 mol $H_2/mol$ hexoseconsumed and the maximum $H_2$ production of 6.77 L $H_2/g$ VSS/day. Compared to $N_2$ sparging, there could be another beneficial effect in $CO_2$ sparging apart from lowering down the $H_2$ partial pressure. High partial pressure of $CO_2$ had little effect on $H_2$ producing bacteria but inhibitory effect on other microorganisms like lactic acid bacteria and acetogens which were competitive with $H_2$ producing bacteria.

  • PDF

Size Distribution and Physicochemical Characteristics of MSW for Design of Its Mechanical Biological Treatment Process (폐기물전처리(MBT)시설 설계를 위한 생활폐기물의 입도분포 및 물리화학적 특성에 관한 연구)

  • Park, Jin-Kyu;Song, Sang-Hoon;Jeong, Sae-Rom;Jung, Min-Soo;Lee, Nam-Hoon;Lee, Byoung-Chul
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.1
    • /
    • pp.62-69
    • /
    • 2008
  • There has been a recent trend in Korea that treatments for combustible wastes among municipal solid waste (MSW) by those methods, such as incineration and landfill are restricted as much as possible and Mechanical Biological Treatment (MBT) are encouraged actively in order to promote resource recovery. To build and operate properly these facilities, the physicochemical characteristics of MSW should be analyzed precisely beforehand. In particular, designing a crusher or separator properly which is the main process in MBT facilities of MSW. require the information on the size distribution characteristics of MSW, but they are nor sufficient in the qualities and quantities yet as of now. Accordingly, this study aims to evaluate size distribution characteristics of MSW and its physicochemical characteristics by size. The samples of MSW were collected from detached dwelling area, apartment area, business area, and commercial area of A city in Korea. According to the result of analysis, paper records 29.78~60.02% by wet weight basis, so it was the most regardless of the regions where the wastes were generated. And in terms of element analysis, Carbon(C) was 34.77~44.39%, the largest friction, and Oxygen(O) was the next occupying 19.46~33.71%. As indices of RDFs, Chlorine(Cl) was 0.39~0.83%, so it was less than the standard, 2.0%(by dry weight basis); moreover, Sulfur(S) did not exceed the standard, 0.6%, either. In the size distribution of MSW, waste fraction ranging 50~80mm in diameter was the most in combustible waste while 30~50mm was in incombustible waste.

  • PDF

Chemical and Spectroscopic Characterization of Soil Humic and Fulvic Acids and Sorption Coefficient of Phenanthrene: A Correlation Study (토양 휴믹물질의 화학적.분광학적 특성에 따른 페난트린 흡착상수와의 상관성 규명에 대한 연구)

  • Lee, Doo-Hee;Lee, Seung-Sik;Shin, Hyun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.11
    • /
    • pp.1067-1074
    • /
    • 2008
  • In this study, the organic carbon normalized-sorption coefficients (Koc) for the binding affinity of phenanthrene (PHE) to 16 different soil humic and fulvic acids of various origins were determined by fluorescence quenching. The humic and fulvic acids used in this study were isolated from 6 different domestic soils including Mt. Hanla soil, IHSS standard soil and peat as well as Aldrich humic acid and characterized by elemental composition, ultraviolet absorption at 254 nm, composition of main structural fragments determined by CPMAS $^{13}$C NMR. The Koc values($\times$10$^4$, L/kg C) for each of HA and FA samples were in the range of 1.48$\sim$8.65 and higher in HA compared to that of FA(3.13$\sim$8.65 vs 1.48$\sim$2.48) in the experimental condition([PHE]/[HS] = 0.02$\sim$0.2(mg/L)/(mg-OC/L), pH 6). The correlation study between the structural descriptors of humic and fulvic acids and log Koc values of phenanthrene, show that the magnitude of Koc values positively correlated with the UV$_{254}$ absorptivity([ABS]$_{254}$) and two $^{13}$C NMR descriptors (C$_{Ar-H,C}$, $\sum$C$_{Ar}$/$\sum$C$_{Alk}$), while negatively correlated with the independent descriptors of the(N+O)/C atomic ratios and $^{13}$C NMR descriptors (I$_{C-O}$/I$_{C-H,C}$). These results confirmed that the binding affinity for the hydrophobic organic compound, phenanthrene are significantly influenced by the polarity and aromaticity of soil humc and fulvic acids.

Demonstration and Operation of Pilot Plant for Short-circuit Nitrogen Process for Economic Treatment of High Concentration Nitrogen Wastewater (고농도 질소함유폐수의 경제적 처리를 위한 단축질소공정 파일럿플랜트 실증화 및 운영 결과)

  • Lee, Jae Myung;Jeon, Ji-hyeong;Choi, Hong-bok
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.1
    • /
    • pp.53-64
    • /
    • 2020
  • A 2㎥/d combined wastewater treatment pilot plant containing the multi-stage vertical stacking type nitrification reactor was installed and operated for more than 1 year under the operating conditions of the short-circuit nitrogen process (pH 8, DO 1mg/L and Internal return rate 4Q from nitrification to denitrification reactor). For economically the combination treatment of food wastewater and the leachate from a landfill, the optimal combination ratio was operated by adjusting the food wastewater with the minimum oil content to 5-25% of the total throughput. The main treatment efficiency of the three-phase centrifugal separator which was introduced to effectively separate solids and oil from the food wastewater was about 52% of SS from 116,000mg/L to 55,700mg/L, and about 48% of normal hexane (NH) from 53,200mg to 27,800 mg/L. During the operational period, the average removal efficiency in the combined wastewater treatment process of BOD was 99.3%, CODcr 94.2%, CODmn 90%, SS 70.1%, T-N 85.8%, and T-P 99.2%. The average concentrations of BOD, CODcr, T-N, and T-P of the treated water were all satisfied with the discharge quality standard for landfill leachate ("Na" region), and SS was satisfied after applying the membrane process. On-site leachate had a relatively high nitrite nitrogen content in the combined wastewater due to intermittent aeration of the equalization tanks and different monthly discharges. Nevertheless nitrite nitrogen was accumulated, denitrification from nitrite nitrogen was observed rather than denitrification after complete nitrification. The average input of anti-forming chemical during the operation period is about 2L/d, which seems to be economical compared to the input of methanol required to treat the same wastewater.

Human Health Risk, Environmental and Economic Assessment Based on Multimedia Fugacity Model for Determination of Best Available Technology (BAT) for VOC Reduction in Industrial Complex (산업단지 VOC 저감 최적가용기법(BAT) 선정을 위한 다매체 거동모델 기반 인체위해성·환경성·경제성 평가)

  • Kim, Yelin;Rhee, Gahee;Heo, Sungku;Nam, Kijeon;Li, Qian;Yoo, ChangKyoo
    • Korean Chemical Engineering Research
    • /
    • v.58 no.3
    • /
    • pp.325-345
    • /
    • 2020
  • Determination of Best available technology (BAT) was suggested to reduce volatile organic compounds (VOCs) in a petrochemical industrial complex, by conducting human health risk, environmental, and economic assessment based on multimedia fugacity model. Fate and distribution of benzene, toluene, ethylbenzene, and xylene (BTEX) was predicted by the multimedia fugacity model, which represent VOCs emitted from the industrial complex in U-city. Media-integrated human health risk assessment and sensitivity analysis were conducted to predict the human health risk of BTEX and identify the critical variable which has adverse effects on human health. Besides, the environmental and economic assessment was conducted to determine the BAT for VOCs reduction. It is concluded that BTEX highly remained in soil media (60%, 61%, 64% and 63%), and xylene has remained as the highest proportion of BTEX in each environment media. From the candidates of BAT, the absorption was excluded due to its high human health risk. Moreover, it is identified that the half-life and exposure coefficient of each exposure route are highly correlated with human health risk by sensitivity analysis. In last, considering environmental and economic assessment, the regenerative thermal oxidation, the regenerative catalytic oxidation, the bio-filtration, the UV oxidation, and the activated carbon adsorption were determined as BAT for reducing VOCs in the petrochemical industrial complex. The suggested BAT determination methodology based on the media-integrated approach can contribute to the application of BAT into the workplace to efficiently manage the discharge facilities and operate an integrated environmental management system.

The Study of Solid Waste Compost Development for Reclaiming Damage Soil in Forest (산림훼손토양 복원을 위한 부숙토 개발 연구)

  • Na, Seung-Ju;Chang, Ki-Woon;Yang, Hui-Young;Jeon, Han-Ki;Lee, Jong-Jin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.2
    • /
    • pp.107-120
    • /
    • 2005
  • To study the development of solid waste compost to use sewage sludge and paper mill sludge for reclaiming damage soil in forest, the changes of temperature, moisture, chemical properties, heavy metals and harmful compound during the aerobic decomposition were investigated, and the compost decomposition of final products investigated the round paper chromatography method and G.I(Germination index) value. The results were summarized as follows. Temperature was changed a little during early 5days because of air temperature too low. That was rapidly increased to over $50^{\circ}C$ at 4days after first turning and then decreased gradually fallen to $40{\sim}50^{\circ}C$ at 15days after aerobic decomposition in A and C treatments. The second turning was conducted at 18 days after aerobic decomposition, and then the temperature was little changed. At the compare first with terminal product, The moisture content was decreased all treatments but the change was little in A and B treatments. pH was decreased to below 1 in all treatments. EC was increased to below 5dS/m. The content of total carbon, C/N ratio, $NH_4{^+}-N$ were decreased with 4~7%, below 8 and below 500mg/kg in all treatments, respectively. The content of total nitrogen, $NO_3{^-}-N$, CEC were increased with below 0.5%, below 173mg/kg and over $30cmol^+/kg$ in all treatments, respectively. The content of heavy metals and harmful compound were similar during aerobic decomposition and suited to standard of 가 grade in all treatments. The result of round paper chromatography method and G.I. value, The C treatment concluded well aerobic decomposition. Especially, the G.I. value in C treatment was 64.1 and 66.2 at cabbage and grass, respectively.

  • PDF