• Title/Summary/Keyword: Organic Agricultural Substances

Search Result 67, Processing Time 0.027 seconds

Micromorphological Characteristics of Soil with Different Patent Materials (모재별 토양의 미세형태 특성)

  • Zhang, Yong-Seon;Jung, Seog-Jae;Kim, Sun-Kwan;Park, Chang-Jin;Jung, Yeon-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.5
    • /
    • pp.293-303
    • /
    • 2004
  • This experiment was conducted to investigate the direction or orientation of clay particle movement in argillic horizons (Bt) for clarifying the soil classification of soils. Soil samples were collected from 22 soil series containing Bt horizons. Physical and chemical characteristics and mineral and chemical compositions of clay in the soils were analyzed. Micoromorphological characteristics of the Bt horizons were also investigated with thin sections of the natural undisturbed and oriented soil samples. Average clay content in the Bt horizons was 28% and 1.33 times higher comparing to that in the surface layer. Soil pH was higher, but cation exchange capacity (CEC) and organic matter content were lower in Bt horizon than those in the surface layer. There was an evidence of clay accumulation in Bt horizons of all soil series examined except Bangog series. Although there was an increase of clay content in the horizons in Bangog series, the clay was not originated from illuviation process. The translocation of clay was in the order of an 2:1 expandable clay minerals > 2:1 non-expandable clay minerals > 1:1 clay minerals. The illuvial substances in argillic horizon were composed with clay, amorphous iron and opaque mineral. The micoromorphological features of Bt horizon were void coating, channel infilling and grain coating. There was an apparent boundary between clay coating and the groundmass in residuum and colluvium, but Bt horizon of alluvium was composed of a skew plane amputated by the physical operation.

Effects of Compost Application and Plastic Mulching on Soil Carbon Sequestration in Upland Soil (밭토양에서 퇴비시용과 비닐멀칭이 토양탄소 축적에 미치는 영향)

  • Kang, Jum-Soon;Suh, Jeong-Min;Shin, Hyun-Moo;Cho, Jae-Hwan;Hong, Chang-Oh
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.4
    • /
    • pp.260-267
    • /
    • 2013
  • BACKGROUND: In most studies, soil carbon sequestration has been evaluated simply with change of soil organic carbon content. So far, information regarding stability of soil organic carbon is limited. METHODS AND RESULTS: This study was conducted to determine changes in soil organic carbon (SOC) content and stability of carbon in response to compost application rates and plastic mulching treatment during the hot pepper growing season. Under the pot experiment condition, compost was mixed with an arable soil at rates corresponding to 0, 10, 20, and 40 Mg/ha. To determine effects of plastic mulching on soil carbon sequestration, plastic mulching and no mulching treatments were set up in soils amended with the application rate of 20 Mg/ha. The SOC content did not significantly increase with application of compost and plastic mulching at harvest time. No significant changes in bulk density with compost application and plastic mulching was found. These might result from short duration of experiment. While hot water extractable organic carbon content significantly decreased with compost application and plastic mulching, humic substances increased. Belowground biomass of hot pepper was biggest at the recommended application rate (20 Mg/ha) of compost. CONCLUSION: From the above results, continuous application of compost at the recommended application rate could improve increase in SOC content and stability of carbon in long term aspect.

Biology and Health Aspects of Molds in Foods and the Environment

  • Bullerman, Lloyd-B.
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.3
    • /
    • pp.359-366
    • /
    • 1993
  • Molds are eucaryotic, multicellular, multinucleate, filamentous organisms that reproduce by forming asexual and sexual spores. The spores are readily spread through the air and because they are very light-weight and tend to behave like dust particles, they are easily disseminated on air currents. Molds therefore are ubiquitous organisms that are found everywhere, throughout the environment. The natural habitat of most molds is the soil where they grow on and break down decaying vegetable matter. Thus, where there is decaying organic matter in an area, there are often high numbers of mold spores in the atmosphere of the environment. Molds are common contaminants of plant materials, including grains and seeds, and therefore readily contaminate human foods and animal feeds. Molds can tolerate relatively harsh environments and adapt to more severe stresses than most microorganisms. They require less available moisture for growth than bacteria and yeasts and can grow on substrates containing concentrations of sugar or salt that bacteria can not tolerate. Most molds are highly aerobic, requiring oxygen for growth. Molds grow over a wide temperature range, but few can grow at extremely high temperatures. Molds have simple nutritional requirements, requiring primarily a source of carbon and simple organic nitrogen. Because of this, molds can grow on many foods and feed materials and cause spoilage and deterioration. Some molds ran produce toxic substances known as mycotoxins, which are toxic to humans and animals. Mold growth in foods can be controlled by manipulating factors such as atmosphere, moisture content, water activity, relative humidity and temperature. The presence of other microorganisms tends to restrict mold growth, especially if conditions are favorable for growth of bacteria or yeasts. Certain chemicals in the substrate may also inhibit mold growth. These may be naturally occurring or added for the purpose of preservation. Only a relatively few of the approximately 100,000 different species of fungi are involved in the deterioration of food and agricultural commodities and production of mycotoxins. Deteriorative and toxic mold species are found primarily in the genera Aspergillus, Penicillium, Fusarium, Alternaria, Trichothecium, Trichoderma, Rhizopus, Mucor and Cladosporium. While many molds can be observed as surface growth on foods, they also often occur as internal contaminants of nuts, seeds and grains. Mold deterioration of foods and agricultural commodities is a serious problem world-wide. However, molds also pose hazards to human and animal health in the form of mycotoxins, as infectious agents and as respiratory irritants and allergens. Thus, molds are involved in a number of human and animal diseases with serious implication for health.

  • PDF

Oxidative Coupling of Herbicide Propanil and Its Metabolite, DCA(3,4-dichloroaniline) to Humic Monomers (제초제 Propanil 및 그 분해산물인 DCA(3,4-dichloroaniline)와 Humic Monomer들과의 산화적 짝지움반응)

  • Kwon, Tae-Dong;Kim, Jang-Eok
    • Applied Biological Chemistry
    • /
    • v.41 no.5
    • /
    • pp.384-389
    • /
    • 1998
  • The herbicide propanil and its metabolite, DCA were incubated with oxidative catalysts in the presence or absence of humic monomers to evaluate the incorporation of them into humic substances. Propanil and DCA underwent little or no transformation by oxidatve catalysts in the absence of humic monomers. In the presence of humic monomers, the most effective co-substrate for transformation of propanil was syringic acid by laccase and HRP, that of DCA was catechol by laccase and HRP, and protocatechuic acid by birnessite. The transformation of DCA was the highest when it was incubated with catechol at pH 8.0 during 24 hrs by laccase, and with catechol at pH 3.0 during 2 hrs by HRP, and with protocatechuic acid at pH 5.0 during 2 hrs by birnessite. The DCA transformation increased with increasing concentration of humic monomers. The transformation of DCA was increased with about 5 times when it was incubated with lactase and birnessite together than lactase alone, but that of it was not effected when it was incubated with HRP and birnessite together. When DCA was incubated with dissolved organic carbon in the presence of oxidative catalysts, the transformation of it was not increased by laccase and birnessite but increased by HRP.

  • PDF

Effect of Defective Onion Extract on the Onion Productivity by Organic Farming (양파 파치 추출물이 유기농 양파성에 미치는 영향)

  • Lee, Chun-Hee;Lee, Sang-Dae;Lee, Sung-Ho;Min, Young-bong;Kim, HyeRan;Lee, Young-Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.1
    • /
    • pp.40-48
    • /
    • 2013
  • This study evaluated the close crop recycling method by using the extract from defective onions. The mixture of the diluted extract (1/500) and nutrients was applied seven times on the onion leaves without spilling it onto the field. The yield and quality of the onions produced by this method (recycle) were compared to those grown organically (control) and conventionally (normal). The yield from the recycling field was increased significantly by 9% compared to that of the control field, while it was decreased by 11% compared to the normal field (p < 0.05). This lower yield was explained by the differences of the mulching vinyl and the fertilizers between the treatments which effect the onion growth during the winter. The content of quercetin in the onions from the recycling filed was increased significantly by 34% and 44% compared to those of the control and normal field, respectively (p < 0.05). It seemed that minerals and biologically active substances in the defective onion extract were effective in increasing the onion growth. In terms of soil microbial biomass, arbuscular mycorrhizal fungi was increased significantly in the recycle field by 40.1% and 30.6% compared to those of the control and normal fields, respectively (p < 0.05). On the other hand, microbial stress (cy19:0/18:1w7c) was decreased in the recycle field by 21.0% and 14.1% compared to those of the control and normal fields, respectively.

Effect of the Coated Urea Fertilizer in the Poorly Drained Coarse Textured Paddy Soils (배수 불량한 사질답에서 피복요소비료의 효율적 이용연구)

  • Kwon, Hye-Young;Park, Chang-Young;Lee, Jae-Saeng;Jeon, Won-Tai;Park, Ki-Do;Choi, Jyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.2
    • /
    • pp.105-109
    • /
    • 2001
  • Poorly drained coarse textured paddy soils has harmful substances(e.g. $Fe^{2+}$, $H_2S$, organic acid etc.) due to reduction condition, and lower soil temperature during early stage of rice crop. The roots of the rice plant usually were distributed in the surface layer, and prone to lodged. To solve the problems, the study was carried out in the typical poorly drained, sandy loam textured paddy soils during 1997-1998. Coated urea and urea fertilizers were applied on the surface and whole layer mixed respectively. Yield of the surface fertilization of coated urea had increasing tendency but not significant. Advantages of this experiment was saving of about 30% of nitrogen fertilizer and top dressing labour, which would reduce possibility of water pollution.

  • PDF

Identification and Antimicrobial Activity Detection of Lactic Acid Bacteria Isolated from Corn Stover Silage

  • Li, Dongxia;Ni, Kuikui;Pang, Huili;Wang, Yanping;Cai, Yimin;Jin, Qingsheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.5
    • /
    • pp.620-631
    • /
    • 2015
  • A total of 59 lactic acid bacteria (LAB) strains were isolated from corn stover silage. According to phenotypic and chemotaxonomic characteristics, 16S ribosomal DNA (rDNA) sequences and recA gene polymerase chain reaction amplification, these LAB isolates were identified as five species: Lactobacillus (L.) plantarum subsp. plantarum, Pediococcus pentosaceus, Enterococcus mundtii, Weissella cibaria and Leuconostoc pseudomesenteroides, respectively. Those strains were also screened for antimicrobial activity using a dual-culture agar plate assay. Based on excluding the effects of organic acids and hydrogen peroxide, two L. plantarum subsp. plantarum strains ZZU 203 and 204, which strongly inhibited Salmonella enterica ATCC $43971^T$, Micrococcus luteus ATCC $4698^T$ and Escherichia coli ATCC $11775^T$ were selected for further research on sensitivity of the antimicrobial substance to heat, pH and protease. Cell-free culture supernatants of the two strains exhibited strong heat stability (60 min at $100^{\circ}C$), but the antimicrobial activity was eliminated after treatment at $121^{\circ}C$ for 15 min. The antimicrobial substance remained active under acidic condition (pH 2.0 to 6.0), but became inactive under neutral and alkaline condition (pH 7.0 to 9.0). In addition, the antimicrobial activities of these two strains decreased remarkably after digestion by protease K. These results preliminarily suggest that the desirable antimicrobial activity of strains ZZU 203 and 204 is the result of the production of a bacteriocin-like substance, and these two strains with antimicrobial activity could be used as silage additives to inhibit proliferation of unwanted microorganism during ensiling and preserve nutrients of silage. The nature of the antimicrobial substances is being investigated in our laboratory.

Effect of Transplanting Times on the Content of Aromatic Substances in Tobacco Cultivar, Hyangcho (이식시기(移植時期)가 향초(香草)(Nicotiana tabacum L.)의 향끽미(香喫味) 물질(物質) 발현(發現)에 미치는 영향(影響))

  • Jeong, Hyung Jin;Kim, Kil Ung
    • Current Research on Agriculture and Life Sciences
    • /
    • v.6
    • /
    • pp.7-12
    • /
    • 1988
  • This study was conducted to establish the most appropriate transplanting time which can attribute to increase of aromatic substances in tobacco variety, Hyangcho, maintaining its original aroma. The highest content of total alkaloid, total nicotine and total nitrogenous compounds were observed in the late transplanting time such as July 5, showing 4.16%, 3.83% and 3.68%, respectively. However, the petroleum ether extract was highest in the early transplanted one such as April 5, showing 5.77% and total sugar content, 12% in April 20. The content of petroleum ether extract decreased as the transplanting time delayed. The early transplanting of Hyangcho on April 20 under vinyl mulching showed the increase of fatty acid content, but the decrease of non-volatile organic acids such as malic and citric acids than those of the conventional transplanting time on March 5. The earlier transplanting time also increased the content of volatile acids such as 2,3-methylbutanoic acid and 3-methyl-pentanoic acid, which seem to be related to tobacco aroma.

  • PDF

Transport of Selected Veterinary Antibiotics (Tetracyclines and Sulfonamides) in a Sandy Loam Soil: Laboratory-Scale Soil Column Experiments (토양컬럼을 이용한 테트라사이클린계 및 설폰아마이드계 항생물질의 이동특성 평가)

  • Lee, Hyeon-Yong;Lim, Jung-Eun;Kim, Sung-Chul;Kim, Kwon-Rae;Kwon, Oh-Kyung;Yang, Jae-E.;Ok, Yong-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.12
    • /
    • pp.1105-1112
    • /
    • 2009
  • Antibiotics are biologically active substances and commonly used for therapeutic treatment of infectious disease in humans and for treating and protecting the health of animals. In recent years, antibiotics have attracted worldwide attention because of their side effects on the environment. Consequently, efforts have been made to monitor the residual of antibiotics in the environment. This study tested the mobility of tetracyclines and sulfonamides in soil and leachate through column experiments. The three tetracycline antibiotics showed higher mass recovery rates in all kinds of soils(28.00~44.11%) than in leachate(10.54~27.43%). This seems attributable to the high adsorption coefficient values($K_d$) of tetracyclines representing strong and active adsorbability to organic and mineral phases in soil, ending up relatively small amount being detected in surface water. By contrast, the sulfonamides(sulfamethazine and sulfathiazole) showed higher mass recovery rates in leachate(23.19~26.20%) compared to in soil(10.41~14.21%) due to lower adsorption coefficient values and higher mobility of sulfonamides, enabling easier movement to surface water through the runoff in the environment.

Meta-analysis on Methane Mitigating Properties of Saponin-rich Sources in the Rumen: Influence of Addition Levels and Plant Sources

  • Jayanegara, Anuraga;Wina, Elizabeth;Takahashi, Junichi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.10
    • /
    • pp.1426-1435
    • /
    • 2014
  • Saponins have been considered as promising natural substances for mitigating methane emissions from ruminants. However, studies reported that addition of saponin-rich sources often arrived at contrasting results, i.e. either it decreased methane or it did not. The aim of the present study was to assess ruminal methane emissions through a meta-analytical approach of integrating related studies from published papers which described various levels of different saponin-rich sources being added to ruminant feed. A database was constructed from published literature reporting the addition of saponin-rich sources at various levels and then monitoring ruminal methane emissions in vitro. Accordingly, levels of saponin-rich source additions as well as different saponin sources were specified in the database. Apart from methane, other related rumen fermentation parameters were also included in the database, i.e. organic matter digestibility, gas production, pH, ammonia concentration, short-chain fatty acid profiles and protozoal count. A total of 23 studies comprised of 89 data points met the inclusion criteria. The data obtained were subsequently subjected to a statistical meta-analysis based on mixed model methodology. Accordingly, different studies were treated as random effects whereas levels of saponin-rich source additions or different saponin sources were considered as fixed effects. Model statistics used were p-value and root mean square error. Results showed that an addition of increasing levels of a saponin-rich source decreased methane emission per unit of substrate incubated as well as per unit of total gas produced (p<0.05). There was a decrease in acetate proportion (linear pattern; p<0.001) and an increase in propionate proportion (linear pattern; p<0.001) with increasing levels of saponin. Log protozoal count decreased (p<0.05) at higher saponin levels. Comparing between different saponin-rich sources, all saponin sources, i.e. quillaja, tea and yucca saponins produced less methane per unit of total gas than that of control (p<0.05). Although numerically the order of effectiveness of saponin-rich sources in mitigating methane was yucca>tea>quillaja, statistically they did not differ each other. It can be concluded that methane mitigating properties of saponins in the rumen are level- and source-dependent.