• 제목/요약/키워드: Ordered Banach space

검색결과 8건 처리시간 0.019초

SOLVABILITY FOR A SYSTEM OF GENERALIZED NONLINEAR ORDERED VARIATIONAL INCLUSIONS IN ORDERED BANACH SPACES

  • Salahuddin, Salahuddin
    • Korean Journal of Mathematics
    • /
    • 제25권3호
    • /
    • pp.359-377
    • /
    • 2017
  • In this paper, we consider a system of generalized nonlinear ordered variational inclusions in real ordered Banach spaces and define an iterative algorithm for a solution of our problems. By using the resolvent operator techniques to prove an existence result for the solution of the system of generalized nonlinear ordered variational inclusions and discuss convergence of sequences suggested by the algorithms.

SYSTEM OF GENERALIZED SET-VALUED PARAMETRIC ORDERED VARIATIONAL INCLUSION PROBLEMS WITH OPERATOR ⊕ IN ORDERED BANACH SPACES

  • Akram, Mohammad;Dilshad, Mohammad
    • 대한수학회논문집
    • /
    • 제36권1호
    • /
    • pp.103-119
    • /
    • 2021
  • In this article, we study a system of generalized set-valued parametric ordered variational inclusion problems with operator ⊕ in ordered Banach spaces. We introduce the concept of the resolvent operator associated with (α, λ)-ANODSM set-valued mapping and establish the existence theorem of solution for the system of generalized set-valued parametric ordered variational inclusion problems in ordered Banach spaces. In order to prove the existence of solution, we suggest an iterative algorithm and discuss the convergence analysis under some suitable mild conditions.

GENERALIZED CONDITIONS FOR THE CONVERGENCE OF INEXACT NEWTON-LIKE METHODS ON BANACH SPACES WITH A CONVERGENCE STRUCTURE AND APPLICATIONS

  • Argyros, Ioannis-K.
    • Journal of applied mathematics & informatics
    • /
    • 제5권2호
    • /
    • pp.433-448
    • /
    • 1998
  • In this study we use inexact Newton-like methods to find solutions of nonlinear operator equations on Banach spaces with a convergence structure. Our technique involves the introduction of a generalized norm as an operator from a linear space into a par-tially ordered Banach space. In this way the metric properties of the examined problem can be analyzed more precisely. Moreover this approach allows us to derive from the same theorem on the one hand semi-local results of kantorovich-type and on the other hand 2global results based on monotonicity considerations. By imposing very general Lipschitz-like conditions on the operators involved on the other hand by choosing our operators appropriately we can find sharper error bounds on the distances involved than before. Furthermore we show that special cases of our results reduce to the corresponding ones already in the literature. Finally our results are used to solve integral equations that cannot be solved with existing methods.

GENERALIZED VECTOR MINTY'S LEMMA

  • Lee, Byung-Soo
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제19권3호
    • /
    • pp.281-288
    • /
    • 2012
  • In this paper, the author defines a new generalized ${\eta}$, ${\delta}$, ${\alpha}$)-pseudomonotone mapping and considers the equivalence of Stampacchia-type vector variational-like inequality problems and Minty-type vector variational-like inequality problems for generalized (${\eta}$, ${\delta}$, ${\alpha}$)-pseudomonotone mappings in Banach spaces, called the generalized vector Minty's lemma.

STRUCTURAL PROJECTIONS ON A JBW-TRIPLE AND GL-PROJECTIONS ON ITS PREDUAL

  • Hugli, Remo-V.
    • 대한수학회지
    • /
    • 제41권1호
    • /
    • pp.107-130
    • /
    • 2004
  • A $JB^{*}-triple$ is a Banach space A on which the group Aut(B) of biholomorphic automorphisms acts transitively on the open unit ball B of A. In this case, a triple product {$\cdots$} from $A\;\times\;A\;\times\;A\;to\;A$ can be defined in a canonical way. If A is also the dual of some Banach space $A_{*}$, then A is said to be a JBW triple. A projection R on A is said to be structural if the identity {Ra, b, Rc} = R{a, Rb, c, }holds. On $JBW^{*}-triples$, structural projections being algebraic objects by definition have also some interesting metric properties, and it is possible to give a full characterization of structural projections in terms of the norm of the predual $A_{*}$ of A. It is shown, that the class of structural projections on A coincides with the class of the adjoints of neutral GL-projections on $A_{*}$. Furthermore, the class of GL-projections on $A_{*}$ is naturally ordered and is completely ortho-additive with respect to L-orthogonality.

FIXED POINT THEOREMS FOR GENERALIZED NONEXPANSIVE SET-VALUED MAPPINGS IN CONE METRIC SPACES

  • Kim, Seung-Hyun;Lee, Byung-Soo
    • East Asian mathematical journal
    • /
    • 제27권5호
    • /
    • pp.557-564
    • /
    • 2011
  • In 2007, Huang and Zhang [1] introduced a cone metric space with a cone metric generalizing the usual metric space by replacing the real numbers with Banach space ordered by the cone. They considered some fixed point theorems for contractive mappings in cone metric spaces. Since then, the fixed point theory for mappings in cone metric spaces has become a subject of interest in [1-6] and references therein. In this paper, we consider some fixed point theorems for generalized nonexpansive setvalued mappings under suitable conditions in sequentially compact cone metric spaces and complete cone metric spaces.

ON A QUADRATICALLY CONVERGENT ITERATIVE METHOD USING DIVIDED DIFFERENCES OF ORDER ONE

  • Argyros, Ioannis K.
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제14권3호
    • /
    • pp.203-221
    • /
    • 2007
  • We introduce a new two-point iterative method to approximate solutions of nonlinear operator equations. The method uses only divided differences of order one, and two previous iterates. However in contrast to the Secant method which is of order 1.618..., our method is of order two. A local and a semilocal convergence analysis is provided based on the majorizing principle. Finally the monotone convergence of the method is explored on partially ordered topological spaces. Numerical examples are also provided where our results compare favorably to earlier ones [1], [4], [5], [19].

  • PDF