• Title/Summary/Keyword: Orchard soil

Search Result 224, Processing Time 0.028 seconds

Some Chemical Properties in Sandy Soil Horizons of Degraded Apple Orchards (사질계(砂質系) 노후화(老朽化) 사과원(園) 토양(土壤)의 층위별(層位別) 수종(數種) 화학성분(化學成分) 분포(分布) 특성(特性))

  • Kang, Shin-Jyung;Choi, Jyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.3
    • /
    • pp.215-219
    • /
    • 1994
  • This experiment was tried for finding out some soil chemical problems when new apple trees were replanted in old orchards. Soil samples were collected from the soil horizons in the old apple orchards cultivated over 40 years and reference soils. The non-cultivated reference soils were located near the old apple orchards and each of the soils was showed as the same pedon with each of the cultivated soils. The results were as follows : Soil pH showed a tendency to decrease in low horizons of the cultivated soils whereas increase in those of the uncultivated soils. As a comparision with each chemical component, the content of exchangeable Ca or total Mn was likely to be deficient in the cultivated soils. But all components except those were not like that. Total exchangeable cations in the cultivated soils were lower than in uncultivated soils. The pH in the cultivated soils showed very high positive correlation with total exchangeable cations. From those result, it was assumed that lower pH in lower horizon which would be originated from low content of total exchangeable cations, reacts as a factor for the deterioration of old apple orchard soil.

  • PDF

Soil Chemical Properties of Peach Orchard and Nutrient Content of Peach Leaves In Gyeongbuk Area (경북지역 복숭아 과수원 토양 화학성 및 복숭아 엽의 양분함량 조사)

  • Seo, Young-Jin;Kim, Jong-Su;Kim, Jae-Kyu;Cho, Jae-Uk;Kwon, Tae-Young;Lee, Jae-Seog
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.3
    • /
    • pp.175-184
    • /
    • 2002
  • Soil chemical parameters of peach orchards and the concentration of nutrients in peach leaves were investigated. Results of soil analysis showed that pH value and content of exchangeable calcium was quite low, required to adjust soil acidity in many investigated soils. Nitrogen and phosphorous contents in leaves were founded to be excessive comparing to RDA's optimal levels(N $29.3{\sim}35.9g\;kg^{-1}$, P $1.7{\sim}2.2g\;kg^{-1}$), while calcium contents were lower than optimal levels($11.2{\sim}21.0g\;kg^{-1}$) in many sites and Potassium content was higher in peach cultivars than nectarine cultivars. Correlation analysis revealed that organic matter contents in subsoils and exchangeable calcium content in soils(top and subsoil) were increased with cultivation year, but available phosphate contents in subsoils were decreased. Organic matter and exchangeable magnesium contents in top soils were positively correlated with potassium and magnesium contents in leaves, whereas were negatively correlated with calcium contents in leaves, impling antagonistic absorption of calcium against potassium and magnesium. The findings indicated that most of soils ought to managed to adjust soil acidity and application amount of nitrogen, phosphorous fertilizer and compost should be controlled properly.

Correlation between the Dieback Ratio and Cultivation Environment for Apple Orchards Infected by Soil-Borne Diseases in Chungbuk Province (충북에서 사과 주요 토양병에 의한 고사율과 재배환경과의 상관관계)

  • Lee, Sung-Hee;Kwon, Yeuseok;Shin, Hyunman;Kim, Ik-Jei;Nam, Sang-Young;Hong, Eui Yon;Kim, Daeil;Cha, Jae-Soon
    • Research in Plant Disease
    • /
    • v.23 no.1
    • /
    • pp.49-55
    • /
    • 2017
  • The previous study showed that die-back of apple trees caused by soil-borne diseases was significantly high in the apple orchards in Chungbuk province. The correlation between dieback ratio and cultivation environment in apple orchards infected by soil-borne diseases was investigated in this study. The dieback ratio of five orchards diseased by violet root rot and five places infected by white root rot showed significantly positive correlation with Ca content and available $P_2O_5$ content in soil, respectively. Whereas, the dieback ratio of fourteen orchards diseased by Phytophthora root rot was not significant. Subgrouping of cultivation environment analysis showed that the slope degree of orchard and the number of fruit setting also affected the dieback ratio caused by violet root rot and Ca content in soil also affected the dieback ratio caused by white root rot. It showed that the slope degree, soil texture, Mg and Ca content affected the dieback ratio caused by Phytophthora root rot. These results can be applied to reduce die-back ratio by the modification cultivation environment for each soil-borne disease.

Surface Runoff Loss of Nitrogen and Phosphorus from Peach Orchard (복숭아 과수원에서 측정된 강우에 의한 질소와 인의 지표면 유실)

  • Kim, Min-Kyeong;Kim, Bok-Jin;Chung, Jong-Bae
    • Applied Biological Chemistry
    • /
    • v.43 no.2
    • /
    • pp.124-129
    • /
    • 2000
  • Nitrogen and P in surface runoff and eroded sediment from cropland areas can contaminate streams and lakes. Runoff losses of N and P were determined in a small field plot $(14.3{\times}24.8\;m)$ of peach orchard from March to November in 1999. Nitrogen and P were applied in the rate of 172 and 46 kg/ha using chemical fertilizer and mixed oil cake fertilizer. During the season, in 26 rainfall events, $421.5\;m^3/ha$ of runoff including 1,989 kg/ha of soil loss was collected. Concentrations of total-N, $NO_3-N$, $NH_4-N$, total-P and $PO_4-P$ in runoff samples were in the range of $4.7{\sim}171.0,\;0.1{\sim}188.0,\;0.13{\sim}3.36$, $0.58{\sim}4.99$ and $0.05{\sim}3.71\;mg/l$, respectively. Total loss of N was 16.39 kg/ha and 75% of the loss was $NO_3-N$. Total loss of P was 1.04 kg/ha, and $PO_4-P$ and sediment bound P accounted for 47 and 27% of the total loss, respectively. The losses of N and P were about 9.5 and 2.3% of the applied N and P in the plot, respectively. Although the loss of N or P would be relatively small in agricultural aspect, considering the high concentrations of N and P in runoff, loss of N and P from croplands should be controlled to reduce the eutrophication problem of stream waters.

  • PDF

Bio-Green' Functional Water Supply Influences Mineral Uptake and Fruit Quality In Tsugaru Apples (‘바이오 그린’ 기능수 처리가 사과 쓰가루 품종의 무기성분 흡수와 과실품질에 미치는 영향)

  • Kim, Wol-Soo;Chung, Soon-Ju
    • Journal of Bio-Environment Control
    • /
    • v.6 no.2
    • /
    • pp.71-79
    • /
    • 1997
  • Commercial Bio- Green(B.G.) functional water was manufactured through a series of processes : water - ultra-purification - adding catalysts - energy imprinting fermenting with energized water + zeolite and others + photosynthetic bacteria in fermenter longrightarrow filtering. Control(0), 5 or 10 liters per plant of B.G. functional water were supplied to the orchard soil under canopy of 10 year- old ‘Tsugaru’/M26 apple trees on March 20, May 20 and June 20, 1995, respectively. pH and content of Ca and Mg of orchard soil were increased by supply with B.G. functional water. However, P$_2$ $O_{5}$, K, and B contents were not influenced by the treatment. At harvest time soluble solid content of flesh tissue and anthocyanin of fruit skin were increased by the treatment. B.G functional water treatment showed higher root activities, and photosynthesis of leaves than that of control. Also B.G. functional water treatment enhanced Ca content in fruit skin and flesh tissues, whereas not affected N, K, and Mg contents. During storage at 4$^{\circ}C$ cold room, the more volume of B.G. functional water supply showed lower bitter pit symptom. Respiration and ethylene evolution in fruit decreased, while fruit firmness increased by the treatment during storage.

  • PDF

Effect of Boron Contained Compound Fertilizer on Chestnut Trees (밤나무 전용복비(專用複肥) 비효시험(肥效試驗))

  • Maeng, Do-Weon;Chung, In-Ku
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.3
    • /
    • pp.250-255
    • /
    • 1983
  • Newly manufactured compound fertilizers for chestnut trees developed by Chosun Fertilizer Inc. were tested to evaluate their effectiveness. An experiment was carried out in chestnut farm with 4 years old Eungi Var. from 1981 to 1982. The results obtained are as follows: 1. The growth of chestnut trees was generally good in plots of compound fertilizer contained boron (B C F). 2. The number of ripened strobiles was significantly increased by reducing the ratio of dropped strobiles in plot of B C F. 3. The yield of chestnut by B C F was markedly increased, 6 times more than that of compound fertilizer without boron. 4. Boron content in soil and plant by application of B C F was relatively high, resulting in high production of chestnut. 5. B C F was effective in chestnut orchard to increase nut production markedly.

  • PDF

Ammonium Nitrate Explosion Technique for the Establishment of Orchard (산지과수(山地果樹)의 재식(栽植)을 위(爲)한 폭약이용(爆藥利用)에 관(關)한 연구(硏究))

  • Yoo, S.H.;Koh, K.C.;Park, M.E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.12 no.4
    • /
    • pp.169-178
    • /
    • 1980
  • Ammonium nitrate explosion technique was applied to seek a convenient method for the establishment of orchard on the undulating to rolling land or hill side of Pogog clay loam soil (Fine Aquic Fragiudalfs : Planosols) having high bulk density and low permeability. Explosions were made by three ammonium nitrate explosives placed in the bottom of 90cm deep auger hole with every 2m interval (Explosion I) and 4m interval (Explosion II) respectively. The effect of the explosion on physical properties of the soil was investigated and compared with the effect induced by manual digging, excavation of $1m{\times}1m$ in diameter and depth (Manual digging I) and trenching of $1m{\times}1m{\times}25m$ in width, depth, and length (Manual digging II) respectively. The results investigated after 7 months from the treatments are summarized as follows : 1. The explosion or manual digging reduced bulk density and hardness, whereas the treatments increased porosity, hydraulic conductivity, and available moisture-holding capacity of the soil. 2. The explosion of 4 m interval improved physical properties of the soil to optimum level up to 70cm of the distance from the explosion core in the range of depth 0-60cm, while in the case of depth from 60 to 100cm the optimum level was achieved only within 50cm radius. 3. When exploded in 2 m interval, the effect in the 0-60cm depth was overlapped between two explosion cores. The effect in the depth between 60 and 100cm, however, was found to be independent of the explosion intervals. 4. The manual digging was only costly and laborious but effective only within the work-up zone. 5. For the soils having bulk density higher than $1.4g/cm^3$ after the treatments, the field capacity determined 72 hours after a heavy rain was lower than the laboratory estimate at the suction of 1/3 atm. 6. The top growth of apple tree for the first year revealed that the explosion seemed better treatment than the manual digging, even though the difference was insignificant.

  • PDF

Calcium Deficiency Causes Pithiness in Japanese Pear (Pyrus pyrifolia cv. Niitaka) Fruit (칼슘 결핍에 의한 '신고' 배 (Pyrus pyrifolia cv. Niitaka) 과실에서의 바람들이)

  • Moon, Byung Woo;Jung, Hae Woong;Lee, Hee Jae;Yu, Duk Jun
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.2
    • /
    • pp.102-107
    • /
    • 2013
  • BACKGROUND: Pithy pear fruit are not distinguished externally from sound fruit and thus often cause unexpected economic losses. To find out the cause of pithiness, the pithiness incidence and characteristics of Japanese pear (Pyrus pyrifolia cv. Niitaka) fruit picked from a spot frequently produced pithy fruit in an orchard were compared with those of fruit picked from another spot produced sound fruit every year. And the soil chemical properties of the two spots and mineral contents in fruit, shoots, and leaves of Japanese pear trees cultivated in the two spots were also examined. METHODS AND RESULTS: The pithiness incidence was 0, 8.8, and 11.3% at 7 days before and 0 and 7 days after optimal harvest date, respectively, in the spot frequently produced pithy fruit. Flesh firmness was significantly lower in pithy fruit than in sound fruit, while soluble solids content was slightly higher in pithy fruit than in sound fruit. Unlike other mineral contents, Ca content was significantly lower in pithy fruit than in sound fruit. These results indicate that Ca deficiency in fruit is closely associated with decrease in flesh firmness and thus pithiness development. Ca content in soil of the spot frequently produced pithy fruit was also significantly lower than that in soil of the spot produced sound fruit. However, shoots or leaves did not exhibit significant difference in Ca and/or other mineral contents between the two spots, indicating that Ca deficiency in fruit is dependent on the translocation of Ca within a plant rather than soil Ca status. Although total-N, available $P_2O_5$, K, and Ca contents were significantly lower in soil of the spot frequently produced pithy fruit than in soil of the spot produced sound fruit, Mg and Na contents and pH were not different between the soil conditions. CONCLUSION(S): Fruit maturity and Ca level in fruit are closely related to the incidence of pithiness in 'Niitaka' Japanese pear.

Soil Erosion Risk Assessment in the Upper Han River Basis Using Spatial Soil Erosion Map (분포형 토양침식지도를 이용한 한강상류지역 토양유실 위험성 평가)

  • Park, Chan-Won;Sonn, Yeon-Kyu;Zhang, Yong-Seon;Hong, S.-Young;Hyun, Byung-Keun;Song, Kwan-Cheol;Ha, Sang-Keun;Moon, Young-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.828-836
    • /
    • 2010
  • This study was conducted to evaluate soil erosion risk with a standard unit watershed in the upper Han river basin using the spatial soil erosion map according to the change of landuse. The study area is 14,577 $km^2$, which consists of 10 subbasins, 107 standard unit watersheds. Total annual soil loss and soil loss per area estimated were $895{\times}10^4\;Mg\;yr^{-1}$ and 6.1 Mg $ha^{-1}\;yr^{-1}$, respectively. A result of analysis with a subbasin as a unit showed that annual soil losses and soil loss per area in Namhan river basins was more than in Bukhan river ones. Predicted annual soil loss according to the landuse ranked as Forest & Grassland > Upland ${\gg}$ Urban & Fallow area > Paddy field > Orchard. Upland area covered 6.2% of the study area, but the contribution of total annul soil loss was 40.6% and that of Forest & Grassland was 44.2%. As a evaluation of soil erosion risk using the spatial soil erosion map, we could precisely conformed the potential hazardous region of soil erosion in each unit watersheds. The ratio of regions, graded as higher "Moderate" for annual soil loss, were respectively 8.7%, 7.9% and 7.8% in 1001, 1002 and 1003 subbasins in Namhan river basin. Most landuse of these area was upland, and these area is necessary to establish soil conservation practices to reduce soil erosion based on the field observation.

Assessment of Soil and Water Quality in some Catchments of Different Agricultural Practices in Nakdong River Basin (낙동강 유역 농업지대에서 영농형태별 토양과 수질 평가)

  • Kim, Min-Kyeong;Seo, Myung-Chul;Lee, Nam-Jong;Chung, Jong-Bae;Kim, Bok-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.1
    • /
    • pp.16-23
    • /
    • 2003
  • Soil and water quality was monitored in the Nakdong River basin to assess the impact of different agricultural practices. From five catchments, soil samples were collected at three times during 1996 to 1998, and water samples were collected at twelve times on July during 1995 to 1999. The major agricultural practices were paddy and upland farming in three areas surveyed: Youngju, Goryung, and Milyang. Apple orchards were located along in the Imgo-Cheon catchment. Intensive vegetable farming in plastic fIlm house was practiced in the Habin-Cheon catchment. Total N contents, 0.04-0.32%, of paddy soils were low in comparison with those of upland, orchard, and plastic film house soils. Available phosphate($P_2O_5$) contents, $2-421mg\;kg^{-1}$, in plastic film house soils were higher than those in paddy soils. In plastic film house and upland soils, CEC of soils were high. The N concentrations in most of the streams were higher than $1.0mg^{-1}$, the standard of agricultural irrigation water. The P concentrations were above $1.0mg^{-1}$, the standard of agricultural irrigation water and were higher than the minimum level for eutrophication, $0.01-0.05mg\;L^{-1}$ in most of the streams. In conclusion, nutrients by agricultural activity could affect water quality of streams near the agricultural fields. Good water quality in streams can be maintained by proper management of agricultural fields and by decreasing application amount of fertilizers in agricultural fields.