• Title/Summary/Keyword: Orbital Angle

Search Result 64, Processing Time 0.033 seconds

Rotational State Distribution of NO after Collisions with Fast Hydrogen Atom

  • Kim, Yu Hang;David A. Micha
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.5
    • /
    • pp.436-438
    • /
    • 1995
  • Based on the collisional time-correlation function approach a general analytical expression has been derived for the double differential cross-section with respect to the scattering angle and the final rotational energy, which can be applied to molecules with non-zero electronic orbital angular momentum after collision with fast hydrogen atoms. By integrating this expression another very simple expression, which gives the final rotational distribution as a function of the rotational quantum number, has also been derived. When this expression is applied to NO(2Π1/2, v'=1) and NO(2Π3/2, v'=1, 2, 3), it can reproduce the experimental rotational distribution after collision with fast H atom very well. The average rotational quantum number and average rotational energy using this expression are also in good agreement with those deduced from the experimental distributions.

Delayed diagnosis of a primary intraosseous squamous cell carcinoma: A case report

  • Abdelkarim, Ahmed Z.;Elzayat, Ahmed M.;Syed, Ali Z.;Lozanoff, Scott
    • Imaging Science in Dentistry
    • /
    • v.49 no.1
    • /
    • pp.71-77
    • /
    • 2019
  • Primary intraosseous squamous cell carcinoma is a rare malignant central jaw tumor derived from odontogenic epithelial remnants. Predominantly, it affects mandible, although both jaw bones may be involved. This report describes a 60-year-old man who was initially misdiagnosed with a periapical infection related to the right lower wisdom tooth. After four months, the patient presented to a private dental clinic with a massive swelling at the right side of the mandible. Panoramic radiographs and advanced imaging revealed a lesion with complete erosion of the right ramus, which extended to the orbital floor. A biopsy from the mandibular angle revealed large pleomorphic atypical squamous cells, which is the primary microscopic feature of a poorly differentiated squamous cell carcinoma.

Evaluating the Effectiveness of Quasi-Zenith Satellite System on Positioning Accuracy Based on 3D Digital Map Through Simulation

  • Suh, Yong-Cheol;Konishi, Yusuke;Shibasaki, Ryosuke
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.751-756
    • /
    • 2002
  • Since the operation of the first satellite-based navigation services, satellite positioning has played an increasing role in both surveying and navigation, and has become an indispensable tool for precise relative positioning. However, in some situations, e.g. at a low angle of elevation, the use of satellites for navigation is seriously restricted because obstacles like buildings and mountains can block signals. As a mean to resolve this problem, the quasi-zenith satellite system has been proposed as a next-generation satellite navigation system. Quasi-zenith satellite is a system which simultaneously deploys several satellites in a quasi-zenith geostationary orbit so that one of the satellites always stay close to the zenith if viewed from a specific point on the ground of East Asia. Thus, if a position measurement function compatible with GPS is installed in the quasi-zenith and stationary satellites, and these satellites are utilized together with the GPS, four satellites can be accessed simultaneously nearly all day long and a substantial improvement in position measurement, especially in metropolitan areas, can be achieved. The purpose of this paper is to evaluate the effectiveness of quasi-zenith satellite system on positioning accuracy improvement through simulation by using precise orbital information of the satellites and a three-Dimensional digital map. Through this simulation system, it is possible to calculate the number of simultaneously visible satellites and available area of the positioning without the need of actual observation.

  • PDF

Spectropolarimetric Signals of Comet 2P/Encke During Its 2017 Apparition

  • Kwon, Yuna Grace;Ishiguro, Masateru;Kuroda, Daisuke;Kawabata, Koji S.;Nakaoka, Tatsuya;Kawabata, Miho;Uemura, Makoto;Shinnaka, Yoshiharu;Akitaya, Hiroshi;collaboration, OISTER
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.49.1-49.1
    • /
    • 2017
  • Comets are one of the most primordial solar system objects that hold the information of the early days of solar system formation inside their nuclei. Orbiting the Sun, they spew such ancient materials that have been buried for many years, creating dust and gas comae. Cometary dust grains absorb and scatter sunlight radiating the continuous light, while gas molecules form the line emissions. Eachof the comets has its own light patterns, which depends on the physical and chemical properties of the dust and gas components. In this regard, spectropolarimetrycan be a powerful tool to study the properties of cometary constituents free from contamination of each other. This methodology offers a series of information on the polarization degrees of the dust and gas components as well as on wavelength dependence of the polarization degree and polarization angle of cometary dust simultaneously. Herein, we will report the results of the spectropolarimetric study of comet 2P/Encke, which is one of the well-known objects for its shortest orbital period and its prominent aging signals. We performed a spectropolarimetric observation of comet 2P/Encke in its inbound orbit using the Higashi-Hiroshima Optical and Near-Infrared Camera (HONIR) at the Higashi-Hiroshima Observatory, Japan, on UT 2017 February 21 at high phase angle of =75.7 deg. Ourstudy of this interesting comet is the first and only one done through spectropolarimetry in a referred publication. We will discuss the most recent polarimetric results of our study in terms of 2P/Encke' scurrent evolutionary status.

  • PDF

MODTRAN 모델을 이용한 다목적 실용위성 2호 MSC의 입사복사량 계산

  • Kim, Yong-Seung;Kang, Chi-Ho
    • Aerospace Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.173-176
    • /
    • 2002
  • This report summarizes the results of MODTRAN model that are used for the calculation of input radiance of the KOMPSAT-2 Multispectral Camera (MSC). We have calculated the input radiances for four months: January 15, April 15, July 15 and October 15. Annual averages are the arithmetic mean of results from four months. We used the mid-latitude winter and summer for the month of January and July, respectively, while US standard atmospheres are used for April and October. The orbital characteristics of KOMPSAT-2 and the seasonal variations of solar zenith angle over the Korean peninsula were incorporated as inputs to the model. The tropospheric aerosol extinction (visibility = 50 km) was assumed. The surface albedo used in the model calculation represents the global annual mean clear-sky albedo. MSC contract values are found to be considerably greater in the MSC spectral range than the total radiances calculated with the above general conditions. From these results, it can be inferred that the forthcoming MSC images would be somewhat dark. We certainly need a countermeasure for this issue.

  • PDF

Minimum-Time Attitude Reorientations of Three-Axis Stabilized Spacecraft Using Only Magnetic Torquers

  • Roh, Kyoung-Min;Park, Sang-Young;Choi, Kyu-Hong;Lee, Sang-Uk
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.2
    • /
    • pp.17-27
    • /
    • 2007
  • Minimum-time attitude maneuvers of three-axis stabilized spacecraft are presented to study the feasibility of using three magnetic torquers perform large angle maneuvers. Previous applications of magnetic torquers have been limited to spin-stabilized satellites or supplemental actuators of three axis stabilized satellites because of the capability of magnetic torquers to produce torques about a specific axes. The minimum-time attitude maneuver problem is solved by applying a parameter optimization method for orbital cases to verify that the magnetic torque system can perform as required. Direct collocation and a nonlinear programming method with a constraining method by Simpson's rule are used to convert the minimum-time maneuver problems into parameter optimization problems. An appropriate number of nodes is presented to find a bang-bang type solution to the minimum-time problem. Some modifications in the boundary conditions of final attitude are made to solve the problem more robustly and efficiently. The numerical studies illustrate that the presented method can provide a capable and robust attitude reorientation by using only magnetic torquers. However, the required maneuver times are relatively longer than when thrusters or wheels are used. Performance of the system in the presence of errors in the magnetometer as well as the geomagnetic field model still good.

THE SELECTION OF ALTITUDE AND INCLINATION FOR REMOTE SENSING SATELLITES (원격탐사 위성의 고도와 궤도기울기 결정)

  • 이정숙;이병선
    • Journal of Astronomy and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.244-255
    • /
    • 1995
  • The success of a satellites mission is largely depended upon the choice of an appropriate orbit. In the case of a remote sensing satellite which observes the Earth, there exits an optimum solar elevation angle depending on the mission. Therefore a sun-synchronous orbit is suitable for a remote sensing mission. The second-order theory for secular perturbation due to non-symmetric geopotential was described. To design a sun-synchronous orbit, a constraint condition on regression of node was derived. A algorithm to determine the altitude and the inclination was introduced using this constraint condition. As practical examples, the altitudes and the inclinations of four remote sensing satellites were calculated. The ground tracks obtained by the orbit propagator were used to verify the resulting sun-synchronous orbital elements.

  • PDF

First Principles Study on Hydrolysis of Hazardous Chemicals PCl3 and POCl3 Catalyzed by Water Molecules (제일원리 계산을 통한 유해화학물질 PCl3와 POCl3의 물분자 촉진 수화반응 연구)

  • Jeong, Hyeon-Uk;Gang, Jun-Hui;Jeon, Ho-Je;Han, Byeong-Chan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.126-126
    • /
    • 2017
  • Using first principles calculations we unveil fundamental mechanism of hydrolysis reactions of two hazardous chemicals $PCl_3$ and $POCl_3$ with molecular water clusters nearby. It is found that the water molecules play a key role as a catalyst significantly lowing the activation barriers by transferring its protons to the reaction intermediates. Interestingly, torsional angles of molecular complexes at transition states are identified as a vital descriptor on the reaction rate. Analysis of charge distribution over the complexes further reinforces the finding with atomic level correlation between the torsional angle and variation of the orbital hybridization state of P in the complex. Electronic charge separation (or polarization) enhances thermodynamic stability of the activated complex at transition state and reduces the activation energy through hydrogen bonding network with water molecules nearby. Calculated potential energy surfaces (PES) for the hydrolysis reactions of $PCl_3$ and $POCl_3$ depict their two contrastingly different profiles of double- and triple-deep wells, respectively. It is ascribed to the unique double-bonding O=P in the $POCl_3$. Our results on the activation free energy show well agreements with previous experimental data within $7kcalmol^{-1}$ deviation.

  • PDF

Modeling, Dynamics and Control of Spacecraft Relative Motion in a Perturbed Keplerian Orbit

  • Okasha, Mohamed;Newman, Brett
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.1
    • /
    • pp.77-88
    • /
    • 2015
  • The dynamics of relative motion in a perturbed orbital environment are exploited based on Gauss' and Cowell's variational equations. The inertial coordinate frame and relative coordinate frame (Hill frame) are used, and a linear high fidelity model is developed to describe the relative motion. This model takes into account the primary gravitational and atmospheric drag perturbations. Then, this model is used in the design of a navigation, guidance, and control system of a chaser vehicle to approach towards and to depart from a target vehicle in proximity operations. Relative navigation uses an extended Kalman filter based on this relative model to estimate the relative position/velocity of the chaser vehicle with respect to the target vehicle. This filter uses the range and angle measurements of the target relative to the chaser from a simulated LIDAR system. The corresponding measurement models, process noise matrix, and other filter parameters are provided. Numerical simulations are performed to assess the precision of this model with respect to the full nonlinear model. The analyses include the navigation errors and trajectory dispersions.

Ab Initio Conformational Study on Ac-Flp-NHMe: Stereoelectronic Effects on Proline Conformation

  • Song, Il-Keun;Kang, Young-Kee
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.76-76
    • /
    • 2003
  • We report here the results on N-acetyl-N'-methylamide of 4-fluoroproline (Ac-Flp-NHMe) calculated using the ab initio molecular orbital method with the self-consistent reaction field (SCRF) theory at the HF level with the 6-31+G(d) basis set to investigate the stereoelectronic effects on the conformational preference of proline depending on the cis/trans peptide bonds and down/up puckerings along the backbone torsion angle $\square$ in the gas phase, chloroform, and water. In the gas phase, all potential energy surfaces for Ac-Flp-NHMe are quite similar to those of Ac-Pro-NHMe, except that up-puckered conformations are more stabilized than down-puckered ones. In chloroform and water, polyproline structures become dominant, whose populations are larger than those of Ac-Pro-NHMe. In chloroform and water, the populations of polyproline II (i.e., tF conformations) are quite similar to each other, but those of polyproline I (i.e., cF conformations) are larger by 5% in water than in chloroform. In particular, all cis populations for Ac-Flp-NHMe in the gas phase, chloroform, and water are decreased than those of Ac-Pro-NHMe.

  • PDF