• Title/Summary/Keyword: Orbital Angle

Search Result 64, Processing Time 0.03 seconds

A Study on Development of Pinhead Forming Process using Hinge Belt Typed Chipconveyor for Machine Tools (공작기계용 힌지벨트형 칩컨베이어 핀헤드 성형공정 개발에 관한 연구)

  • Park, Dong-Geun;Choi, Chi-Hyuk;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.4
    • /
    • pp.27-32
    • /
    • 2010
  • This paper presents an investigation into the pinhead forming process with the objective of finding the optimal forming conditions. In order to this, the orbital forming analysis of a heading MIG was carried out using the explicit finite element method. Relationships between temperature by forming of load and stresses, rake angle by forming final shape and stress distribution were investigated through analysises in order to find an efficient solution. As a result, the higher temperature and orbital rake angle were the better forming conditions.

PREDICTION OF THE AERODYNAMIC CHARACTERISTICS OF AN ORBITAL BLOCK OF A LAUNCH VEHICLE IN THE RAREFIED FLOW REGIME USING DSMC APPROACH (DSMC 해석기법을 이용한 희박유동 환경에서의 발사체 Orbital Block 공력특성 예측)

  • Kim, Young-Hoon;Ok, Ho-Nan;Choi, Young-In;Kim, In-Sun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.79-82
    • /
    • 2007
  • The aerodynamic coefficients of Apollo capsule are calculated using a DSMC solver, SMILE, and the results agree very well with the data predicted by NASA. The aerodynamic characteristics of an orbital block which operates at high altitudes in the free molecule regime are also predicted. For the nominal flow conditions, the predicted aerodynamic force is very small since the dynamic pressure is extremely low. And the additional aerodynamic coefficients for the analysis of the attitude control are presented as the angle of attack and the side slip angle vary from $+45^{\circ}\;to\;-45^{\circ}$ of the nominal angle.

  • PDF

Frontal Cephalogram Study on The Natural Head Position of Facial Asymmetry Patients (안면비대칭 환자의 natural head position에 대한 정모두부방사선사진 연구)

  • Kim, Hyun;Hwang, Hyeon-Shik
    • The korean journal of orthodontics
    • /
    • v.30 no.5 s.82
    • /
    • pp.535-542
    • /
    • 2000
  • The purpose of this study was to find the characteristics of the frontal natural head position(NHP) of patients with facial asymmetry, and to contribute to the diagnosis of facial asymmetry in the clinical examination of orthodontic patients. Twenty adult patients who had apparent facial asymmetry and no severe sagittal skeletal discrepancy were selected as the asymmetry group, and 21 young adults who had symmetric faces were selected as the symmetry group. Frontal cephalograms were obtained in the state of NHP using a pivot-mounted fluid level device. The degree of the menton deviation was defined as the angle between the line drawn through crista galli and anterior nasal spine and the line drawn through crista galli and menton. The following angles were measured and each of them was compared with the degree of the menton deviation one is the angle between the true vertical line and the supra-orbital line which is a tangent line to the extreme cranial point on the supra-orbital margin, and the other is the angle between the true vertical line and the cervical line drawn through the midpoint of atlas and the 4th cervical vertebra. Through the statistical analysis, following results were obtained. 1. The angle between the supra-orbital line and the true vertical line was much mote deviated from the right angle in the asymmetry group than in the symmetry group. 2. The angle between the cervical line and the true vertical line in the asymmetry group showed greater tendency than in the symmetry group, but the difference was not statistically significant. 3. In the asymmetry group, the degree of the menton deviation was positively correlated with the angle between the supraorbital line and the true vertical line. The above results suggest that racial asymmetry patients show the tendency to have the tilted NHP to compensate the deviation of menton position.

  • PDF

VALIDITY OF POSTERIOR ANTERIOR CEPHALOMETRIC AND 3D-CT FOR ORBITAL CANTING ANALYSIS (안와 경사의 분석을 위한 정모 두부규격방사선사진, 3D-CT의 유용성 평가)

  • Kim, Jin-Wook
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.6
    • /
    • pp.546-553
    • /
    • 2008
  • Purpose: The purpose of this study was to estimate validity of posterior anterior cephalometric and 3D-CT for orbital canting analysis. Materials and methods: Three trained observers classified two patients group using standardized frontal photographs of facial asymmetry patients. Group A consisted of patients with facial asymmetry and orbital canting(n=19), and group B consisted of patients with only facial asymmetry(n=43). Orbital canting was measured with line of bilateral inferior orbitale. Orbital canting measurement was done with posterior anterior cephalometric and 3D-CT. Each horizontal reference line was established by bilateral GWSO(cephalometric), FZS(3D-CT). Maxillary canting and mandibular deviation angle were also measured and analyzed with orbital canting. Results: The mean orbital canting was $3.03{\pm}1.00^{\circ}$ in Group A and $1.11{\pm}0.76^{\circ}$ in Group B in frontal photograph. The mean orbital canting was $1.20{\pm}0.74^{\circ}$ in group A and $1.22{\pm}0.65^{\circ}$ in group B by cephalometric analysis(p>0.05). In 3D-CT, orbital canting was almost paralleled with horizontal reference line. The orbital canting, maxillay canting and mandibular deviation between two groups showed no significant differences except madibular deviation in 3D-CT. Conclusion: Common analysis of posterior anterior cephalometric and 3D-CT is not valide method to evaluate orbital canting for facial asymmetry patients with orbital canting.

AERODYNAMIC ANALYSIS OF SUB-ORBITAL RE-ENTRY VEHICLE (저궤도 재진입 비행체의 공력해석)

  • Kim, C.W.;Lee, Y.G.;Lee, D.S.
    • Journal of computational fluids engineering
    • /
    • v.13 no.2
    • /
    • pp.1-7
    • /
    • 2008
  • For Aerodynamic analysis of vehicle at altitude, 100km, the validity of governing equations based on continuum model, was reviewed. Also, as the preliminary study for the sub-orbital space plane development, a candidate geometry was suggested and computational fluid dynamic(CFD) analysis was performed for various angles of attack in subsonic and supersonic flow regimes to analyze the aerodynamic characteristics and performance. The inviscid flow analyses showed that the stall starts at angle of attack above $20^{\circ}$, the maximum drag is generated at angle of attack, $87^{\circ}$ and the maximum lift to drag ratio is about 8 in subsonic flow. In supersonic, the stall angle is about $40^{\circ}$ and the maximum drag is generated at angle of attack, $90^{\circ}$. Also, mach number distribution of re-entry vehicle was computed versus altitudes.

MO Theoretical Studies on the Effect of Bond Angle Distortion in Pyrazine

  • Lee, Ik-Choon;Kim, Ho-Soon
    • Bulletin of the Korean Chemical Society
    • /
    • v.5 no.2
    • /
    • pp.68-73
    • /
    • 1984
  • An enhancement of through-bond interaction by bond angle distortion in pyrazine was examined using various MO methods. Results of MINDO/3 geometry optimization with an angle (${\alpha}$) at $C_2$ atom fixed to 120∼90$^{\circ}$ lead to distorted structures in which the distorted bond is brought closer toward lone pair orbital n of N atom. It was also found that the bond angle distortion increased the P character at the atom $C_2$, resulting in an increased vicinal overlap between n and the $C_2-C_3$ bond. The FMO patterns of ${\sigma}$ framework showed three-fold degeneracy, one of which was of different symmetry which mixes in the symmetry adapted pair, $n_+\;and\;n_-;\;both\;n_+\;and\;n_-$ orbitals thus can interact with both FMOs of the ${\sigma}$ framework. The LCBO-MO analysis with partial elimination of bonds, antibonds or both, however, revealed that the main interaction of $n_+$ was with the HO-${\sigma}$ and that of $n_-$ was with the LU-${\sigma}^{\ast}$ orbital of the ${\sigma}$ framework.

The Reliability of the Transconjunctival Approach for Orbital Exposure: Measurement of Positional Changes in the Lower Eyelid

  • Yoon, Sung Ho;Lee, Jin Hoon
    • Archives of Craniofacial Surgery
    • /
    • v.18 no.4
    • /
    • pp.249-254
    • /
    • 2017
  • Background: Lower eyelid incisions are widely used for the orbital approach in periorbital trauma and aesthetic surgery. In general, the subciliary approach is known to cause disposition of the lower eyelid by scarring the anterior lamella in some cases. On the other hand, many surgeons believe that a transconjunctival approach usually does not result in such complications and is a reliable method. We measured positional changes in the lower eyelid in blowout fracture repair since entropion is one of the most serious complications of the transconjunctival orbital approach. Methods: To measure the positional changes in the lower eyelids, we analyzed preoperative and postoperative photographs over various time intervals. In the analysis of the photographs, marginal reflex distance 2 ($MRD_2$) and eyelash angle were used as an index of eyelid position. Statistical analyses were performed to identify the significance in the positional changes. All patients underwent orbital reconstruction through a transconjunctival incision by a single plastic surgeon. Results: In 42 blowout fracture patients, there was no statistical significant difference in the MRD2 and eyelash angle. Furthermore, there were no clinical complications, such as infection, hematoma, bleeding, or implant protrusion, during the follow-up periods. Conclusion: The advantages of the transconjunctival approach for orbital access include minimal scarring and a lower risk of eyelid displacement compared with other approaches. Based on these results, we recommend the transconjunctival approach for orbital exposure as a safe and reliable method.

Sex-related and racial variations in orbital floor anatomy

  • Moon, Seung Jin;Lee, Won Jai;Roh, Tai Suk;Baek, Wooyeol
    • Archives of Craniofacial Surgery
    • /
    • v.21 no.4
    • /
    • pp.219-224
    • /
    • 2020
  • Background: Repair of the orbital floor following trauma or tumor removal remains a challenge because of its complex three-dimensional shape. The purpose of the present study is to understand normal orbital floor anatomy by investigating its differences across four groups (Caucasian American and East Asian, males and females) via facial bone computed tomography (CT). Methods: A total of 48 orbits in 24 patients between 20 and 60 years of age were evaluated. Although most patients underwent CT scanning following trauma, the orbital walls were intact in all patients. Linear and angular measurements of the orbital floor were obtained from CT images. Results: Orbital floor width, length, angle between the orbital floor and medial wall, and distance from the inferior orbital rim to the lowest point of the orbital floor did not show a statistically significant difference between groups. Angles made by the infraorbital rim, the lowest point of the floor, and the anterior border of the infraorbital fissure were statistically significantly wider in East Asian females than in male groups. The floor depth in East Asian females was significantly smaller compared to all the other groups. Conclusion: East Asian female population had smaller curvature and depth of an orbital floor than the other groups, which means racial and sex-related differences should be considered in the orbital floor reconstruction.

Application of NMR to Magnet Study (자성 연구에 있어서의 핵자기공명의 쓸모)

  • Lee, Soon-Chil
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.2
    • /
    • pp.68-74
    • /
    • 2010
  • Nuclear Magnetic Resonance (NMR) is a very useful tool for magnet study because it provides information on local spin environment. The valence of magnetic ions, spin canting angle, orbital state can be measured by NMR and the information on the position of the ions and the change of domains and domain walls can be obtained. The principle of operation is discussed with corresponding application examples.

Binary Nature Revealed in Circumstellar Spiral-Shell Patterns

  • Kim, Hyosun;Hsieh, I-Ta;Liu, Sheng-Yuan;Taam, Ronald E.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.56.1-56.1
    • /
    • 2014
  • With the advent of high-resolution high-sensitivity observations, spiral patterns have been revealed around several asymptotic giant branch (AGB) stars. Such patterns can provide possible evidence for the existence of central binary stars embedded in outflowing circumstellar envelopes. It is, however, not generally recognized that the binary induced pattern, vertically extended from the orbital plane, exhibits a ring-like pattern with an inclined viewing angle. I will first review the binary-induced spiral-shell patterns on the AGB circumstellar envelopes with the effect of inclination angle with respect to the orbital plane, of which large inclination cases reveal incomplete ring-like patterns. I will describe a method of extracting such spiral-shell from the gas kinematics of an incomplete ring-like pattern to place constraints on the characteristics of the (unknown) central binary stars. This first success may open the possibility of connecting the ring-like patterns commonly found in the AGB circumstellar envelopes and in the outer parts of (pre-)planetary nebulae and pointing to the conceivable presence of central binary systems, which may give a clue for the onset of asymmetrical planetary nebulae.

  • PDF