fnorg. Chem. 14, 417 (1975).
(3) J. M. Fruchart, G. Herve, J. P. Launay, and R. Massart. J. Inorg. Nucl. Chem., 38, 1627 (1976).
(4) H. Wu. J. Biof. Chem., 43, 189 (1920).
(5) A. Téze and G. Hervé, J. fnorg. Nuct. Chem., 39, 999 (1977).
(6) P. Souchay. "Ions Mineraux Condensés", p. 93, Masson et Cie. Paris, 1969.
(7) H. K. Saha and A. K. Banerjee, Inorganic Syntheses. 15. 100 (1974).
(B) H. So and M. T. Pope, fnorg. Chem., 11, 1441 (1972).
(9) G. Lange. H. Hahn, and K. Detnicke, Z. Naturforschg., 24b. 1498 (1969).
(10) C. Rocciccioli-Deltcheff and R. Thouvenot. J. Chem. Res. (M), 0549 (1977).
(11) C. Sanchez. J. Livage. J. P. Launay, M. Fournier and Y. Jeannint, J. Amer. Chem. Soc. 104, 3194 (1982).
(12) C. R. Hare. I. Bernal and H. B. Gray, Inorg. Chem., 1. 831 (1962).
(13) H. So, M. Kolor, P. R. Robinson, G. P. Haight. Jr. and R.L. Belford, J. Coord. Chem., 9, 43 (1979).
(14) T. Imamura, G. P. Haight, Jt., and R. L. Belford. Inorg. Chem. 15, 1074 (1976).
(15) Our unpublished results.
(16) Reference 6. p. 97.
(17) However, the isosbestic point that appears during the evolution of Spectrum $A$ is less clearly seen at this pH . Moreover, the stable isomer of $\left[\mathrm{PMOW}_{11} \mathrm{O}_{40}\right]^{4-}$ is believed to disproportionate at $\mathrm{pH} \geq 2$. See Reference 2. These are the reasons why we present the spectra at pH 1.1 in figures 1 and 2.
(18) The molybdenum complexes that contribute to Spectrum A at 20.2 kK and their molar absorptivities are Complex $\mathrm{A}(\varepsilon>3040)$. Complex $\mathrm{B}(\varepsilon 980)$, and $\left[\mathrm{Mo}_{2} \mathrm{O}_{4}\left(\mathrm{PW}_{11^{-}}\right.\right.$ $\left.\left.\mathrm{O}_{39}\right)_{2}\right]^{12-}\left(\varepsilon / 2<170 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$. The last complex is discussed later in the text.

# MO Theoretical Studies on the Effect of Bond Angle Distortion in Pyrazine 

Ikehoon Lee ${ }^{\dagger}$ and Ho Soon Kim<br>Department of Chemistry thha University, Incheon 160, Korea (Received November 10, 1983)


#### Abstract

An enhancement of through-bond interaction by bond angle distortion in pyrazine was examined using various MO methods. Results of MINDO/3 geometry optimization with an angle ( $\alpha$ ) at $\mathrm{C}_{2}$ atom fixed to $120 \sim 90^{\circ}$ lead to distorted structures in which the distorted bond is brought closer toward lone pair orbital $n$ of $N$ atom. It was also found that the bond angle distortion increased the $P$ character at the atom $C_{2}$, resulting in an increased vicinal overtap between $n$ and the $C_{2}-C_{3}$ bond. The FMO patterns of $\sigma$ framework showed three-fold degeneracy, one of which was of different symmetry which mixes in the symmetry adapted pair, $n_{+}$and $n_{-}$; both $n_{+}$and $n_{-}$orbitals thus can interact with both FMOs of the $\sigma$ framework. The LCBO-MO analysis with partial elimination of bonds, antibonds or both, however, revealed that the main interaction of $n_{+}$was with the $\mathrm{HO}-\sigma$ and that of $n_{-}$was with the $\mathrm{LU}-\sigma^{*}$ orbital of the $\sigma$ framework.


## Introduction

According to the perturbation molecular orbital (PMO) theory of orbital interactions ${ }^{1}$, through-space (TSI) and through-bond interaction (TBI) energies of two nonbonding orbitals, $n_{1}$ and $n_{2}$, are obtained as first order and second order perturbation energy terms respectively. It has been shown ${ }^{1}$ that the evaluation of second order (TBI) terms is simplified since interaction of the symmetry adapted pair, $n_{4}=n_{1}+n_{2}$ and $n_{-}=n_{1}-n_{2}$, with one of the frontier MOs (FMO) always vanishes because of different symmetries involved in the two interacting orbitals depending on the number, $N$, of the intervening $\sigma$ bonds, as summarized in Table 1. This has been succinctly demonstrated using FMO patterns of the $\sigma$-framework obtained based on the " C approximation".

Recently it has been shown in a spectroscopic study of a cyclobutapyrazine derivative (I) that TBI of the two nitrogen lone-pair orbitals is enhanced due to distortion of bond
angles at carbons 2 and 3 of pyrazine ring (II) ${ }^{2}$.
This has been ascribed to an enhancement of the $P$ character of the $\sigma$ bond orbital through which the interaction occurs.

In this work we have carried out detailed analysis of the enhanced TBI due to bond angle distortion using pyrazine as a model within the framework of PMO theory of orbital interactions.

TABLE 1: Through-bond Interaction Schemes between $\boldsymbol{n}_{ \pm}$and FMOs of o-framework

| symmetry adapted pair | framework $\sigma$-FMO |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $N=$ odd |  | $N=$ even |  |
|  | $\underset{(S)}{\mathrm{HO}_{( }-\boldsymbol{O}}$ | ${\underset{(A)}{ }}_{L U_{i}-\sigma^{*}}$ | $\underset{(A)}{\mathrm{HO}-\sigma}$ | $\underset{(S)}{\mathrm{LU}-\sigma^{*}}$ |
| $n+(S)$ | $y$ | 0 | 0 | - $x$ |
| $n_{-}(A)$ | 0 | $-x$ | y | 0 |

$S$ and $A$ refer to symmetric and antisymmetric orbitals respectively. $X$ and $y$ are the second order energy terms which are positive with $y>x$.

(I) endo-3,4-pyrazinotricyclo [4.2.1.0 $0^{2,5}$ ]nonane

(11) Pyrazine

## Computations

Geometries of various pyrazine structures were optimized with the MINDO/3 method ${ }^{3}$ and the linear-combination-of-bond-orbitals (LCBO) calculations ${ }^{4}$ at the CNDO level were used to carry out the bond ( $\sigma$ )-antibond ( $\sigma^{*}$ ) analysis of orbitals. $A b$ initio (STO-3G) calculations ${ }^{5}$ have also been performed using the MINDO/3 optimized geometries.

## Results and Discussion

The bond angle $\alpha$ in pyrazine was independently varied from $120^{\circ}$ to $90^{\circ}$ and for a fixed value of $\alpha$, the other geonetries were optimized.
The results summarized in Table 2 indicate that the effects of decreasing $\alpha$ are: bond angle $\beta$ increases whereas $\gamma$ decreases, and bond lengths $b$ and $d$ decrease while $a$ and $c$ increase. The fully distorted structure can be represented as III.


Energy levels of $n_{+}$and $n$. calculated with three differe-
nt methods using MINDO/3 geometries are summarized in Table 3, where the $P$ character of the carbon 2 and $S$ character of the lone pair in the $n_{+}$orbital are also included.
The $n_{-}$level is in every case below $n_{+}$in accordance with the expectation from the odd number ( N ) of the intervening $\mathrm{C}-\mathrm{C}$ bonds ${ }^{1}$. Reference to Table 3 reveals that irrespective of the method of computation, bond angle ( $\alpha$ ) distortion induces further depression of $n_{-}$and elevation of $n_{+}$levels. It is also seen from this table that these changes are accompanicd with an increase in the $P$ character of the carbon ? and with a relatively small decrease in the $S$ character of the tone pair orbital? ${ }^{2,}$.
Vicinal overlap integrals $S^{*}$ between $n$ and bond, $\sigma$, and antibond, $\sigma^{*}$, orbitals of $a$ and $d$ are given in Table 4.
Alsolute values of $S$ iend to increase for the overlap between $n$ and $a,|S n a|$ and $\left|S n a^{*}\right|$, while those for the overlap between $n$ and $d,|S n d|$ and $\left|S n d^{*}\right|$, tend to decrease, although the decrease in the latter is seen to be much smaller than the increase in the former.

Data in the Table 3, 4 and 5 are of course inter-related. Optimized geometries have shown that $n$ and $a$ are brought closer while $n$ and $d$ become farther apart as the angle $\alpha$ is decreased; natural consequences are the increase in $\mid$ Sna $\mid$ and the relatively small decrease in $|S n d|$, which in turn will result in the enhanced TBI. The enhanced $P$ character of the carbon 2 will also contribute to the increase in $\mid$ Sna| and hence in $\mathrm{TBI}^{2,6(c)}$.
Energy splitting, $\Delta E=\varepsilon_{4}-\varepsilon_{-n}$, energy change, $\delta \varepsilon=\varepsilon_{\Delta D}-\varepsilon_{0,}$
TABLE 2: MINDO/3 Optinized Geometries of Pyrazine with Fixed Bond Angle a

| $\alpha$ | $\beta$ | $\boldsymbol{\gamma}$ | $a$ | $b$ | $c$ | $d$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 120 | 120.7 | 118.5 | 1.409 | 1.335 | 1.335 | 1.409 |
| 105 | 122.2 | 115.6 | 1.433 | 1.321 | 1.349 | 1.405 |
| 95 | 123.2 | 113.3 | 1.460 | 1.313 | 1.361 | 1.399 |
| 93 | 123.2 | 113.2 | 1.466 | 1.311 | 1.362 | 1.398 |
| 90 | 123.2 | 113.1 | 1.479 | 1.308 | 1.364 | 1.395 |
| $90^{*}$ | 124.4 | 112.2 | $1.400^{*}$ | 1.327 | 1.350 | 1.411 |

*The bond-length $a$ is fixed so $1.400 \AA$ arbitrarily.

TABLE 3: Changes in Energy Levels of $n_{+}$and $n_{-}$Orbitals and in the $S$ and $P$ Characters as $a$ is Changed

|  | $\alpha$ | orbital energy (eV) |  | $S$ character* | Pcharacter* |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | e. | $\varepsilon_{+}$ |  |  |
| MINDO/3 | 120 | -9.940 | -7.778 | 0.210 | 0.256 |
|  | 105 | $-10.127$ | $-7.709$ | 0.206 | 0.296 |
|  | 95 | -10.242 | -7.648 | 0.205 | 0.324 |
|  | 93 | -10.231 | -7.610 | 0.204 | 0.329 |
|  | 90 | $-10.219$ | -7.559 | 0.203 | 0.338 |
|  | (90*) | --10.811 | -7.672 | 0.205 | 0.324 |
| STO-3G | 120 | $-11.309$ | $-8.598$ | 0.321 | 0.247 |
|  | 105 | $-11.560$ | $-8.543$ | 0.308 | 0.284 |
|  | 90 | --11.786 | $-8.310$ | 0.292 | 0.326 |
| LCBO | 120 | -16.423 | -12.169 |  |  |
|  | 105 | -16.785 | $-12.050$ |  |  |
|  | 90 | -17.038 | -11.740 |  |  |

*AO coefficients for $n_{+}$level.
where $\varepsilon_{\text {av }}=\left(\varepsilon_{+}+\varepsilon_{-}\right) / 2$ and splitting ratio, $S R=\frac{\varepsilon_{0}-\varepsilon_{-}}{\varepsilon_{+}-\varepsilon_{0}}$, are summarized in Table 5 .
Very small TSI involved (vide infra) in pyrazine due to the long distance between the two $n$ orbitals makes the magnitudes of these quantities eligible as measures of TBI. Inspection of Table 5 reveals that the magnitudes of these quantities and hence TBI increase with the degree of bond angle ( $\alpha$ ) distortion. We note that the enhancement of TBI is greater when both sides are subjected to bond angle distortion (group B), while introduction of a fused three membered ring on one side causes some reduction in TBI, (group C).
In the LCBO-MO method ${ }^{4}, \mathrm{MOs} \bar{W}_{i}$ are constructed as a linear combination of "bonds, $\sigma$," "antibonds, $\sigma^{*}$," and "lone pairs, $n$," which are in turn formed by the directed hybrid orbitals of $\mathrm{sp}^{3}$ and $\mathrm{sp}^{2}$ types.

$$
\begin{equation*}
\Phi_{i}=\sum c_{i j} n_{j}+\sum c_{i k} \sigma_{k}+\sum c_{i t} \sigma_{l}^{*} \tag{I}
\end{equation*}
$$

It is useful in this method to see what effect does the $\sigma$ or $\sigma^{*}$ have on the MO $\$$ by eliminating a part of or the whole of $\sigma$ or $\sigma^{*}$ orbitals from the molecule. This type of technique was found useful especially in elucidating the importance of $\sigma^{*}$ orbitals in conformational problems ${ }^{8}$.

In order to gain further information as to the effect of bond angle distortion on TBI of two $n$ orbitals in pyrazine, we considered six structures (B) $\sim(G)$, in which $\sigma$ or $\sigma^{*}$ or both are eliminated from a part of the molecule as indicated by dotted line in Figure 1.

TABLE 4: Vicinal Overiaps between $\boldsymbol{n}$ and Bonds $\sigma$ and Antibonds $0^{*}$ of $\boldsymbol{a}$ and $\boldsymbol{a}$ Calculated with LCBO-MO Method

| $\alpha$ |  | $S$ |  |  | $S$ |
| ---: | :--- | :--- | :--- | :--- | :--- |
|  | Sna | Sna $^{*}$ | Snd | Snd |  |
| 120 | -0.095 | 0.063 | -0.095 | -0.062 |  |
| 105 | -0.100 | 0.069 | -0.091 | -0.059 |  |
| 90 | -0.106 | 0.076 | -0.086 | -0.056 |  |

The level changes and energy splittings of the symmetry adapted pair, $n_{+}$and $n_{-}$, accompanied by these partial deletion ${ }^{9}$ are summarized in Table 6.

Three calculations for each structure in Figure 1 were performed: (i) with all bonds, $\sigma$, eliminated, (ii) with both bonds and antibonds, $\sigma^{*}$, eliminated, and (iii) with all antibonds eliminated, from the part conoerned.

The structure A has no part deleted but considers two cases of bond angle $\alpha, 120^{\circ}$ and $90^{\circ}$. It is seen from the Table 6 that bond angle distortion leads to depression of $n_{-}$ level ( 0.59 eV ) more than to raise $n_{+}$level ( 0.43 eV ).
In the structure B the two environment adjusted lone pairs are removed entirely from the rest of the molecule. As a result of distortion, the level of the $\mathrm{HO}-\sigma$ orbital of the $\sigma$ framework is seen to be slightly elevated relative to that for the undistorted structure. This seems to be in tine with the enhanced interaction (TBI) with the $n_{+}$level due to

(A)

(в)

( $\cdot$.

(b)

(E)

(F)

(G)

Figure 1. Undistorted, $A$ and $B$ with $\alpha=120$, and distorted, $A$ and $B$ with $\alpha=90$ and (B)-(G). structures with partially eliminated regions shown (......).

TABLE 5: Energy Splitting $\Delta E=\varepsilon_{+}-\varepsilon_{-}$(eV), Intersction Energy Change, $\delta \varepsilon_{=\sim \varepsilon_{s i}-t_{0}}(\mathrm{eV})$, and Spliting Ratio (SR)

|  |  | $\alpha$ | $\Delta E$ | $\varepsilon_{\text {ar }}$ | 4 | de | SR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MINDO/3 | A | 120 | 2.17 | -8.86 | $-8.43$ | -0.43 | 2.3 |
|  |  | 105 | 2.42 | -8.92 | $-8.39$ | -0.53 | 2.5 |
|  |  | 95 | 2.59 | -8.95 | $-8.35$ | -0.60 | 2.7 |
|  |  | 93 | 2.62 | -8.92 | -8.32 | -0.61 | 2.7 |
|  |  | 90 | 2.66 | $-8.89$ | $-8.27$ | -0.62 | 2.8 |
|  | B | 120 | 2.17 | $-8.86$ | $-8.43$ | -0.43 | 2.3 |
|  |  | 105 | 2.63 | -9.04 | $-8.44$ | $-0.60$ | 2.7 |
|  |  | 90 | 3.00 | $-9.09$ | $-8.36$ | -0.73 | 2.9 |
|  | C | 120 | 3.08 | -8.73 | $-7.83$ | -0.90 | 3.8 |
|  |  | 105 | 3.16 | $-8.89$ | $-7.98$ | $-0.91$ | 3.8 |
|  |  | 90 | 3.16 | -8.96 | $-8.09$ | $-0.87$ | 3.4 |
|  | D | $\mathrm{di}-\mathrm{CH}_{3}$ | 2.23 | -8.65 | -8.14 | -0.51 | 2.7 |
| STO-3G | E | 120 | 2.61 | -9.90 | -9.04 | -0.86 | 4.9 |
|  |  | 105 | 3.02 | $-10.05$ | -9.03 | $-1.02$ | 5.2 |
|  |  | 90 | 3.48 | -10.05 | -8.84 | -1.21 | 5.5 |

Gorup A: One side distorted. B: Both sides distorted. C: One side has a fused three membered ring. D: 2,3-Dimethyl pyazine. E: One side distorted.

TABLE 6: Energy Levels of $n_{+}$and $n_{-}$and Energy Splirgy Splittings for Various Partially Eliminated Structures

the energy gap narrowing.
In the structure C , lone pairs are attached to N atoms but N atoms are cut off from the molecule in the three ways, i.e., (i), (ii) and (iii), as classified above. First of all, in the case (ii), we have the situation where only TSI is possible between the two $n$ orbitals. The results are as expected from a pure TSI between two $n$ orbitals relatively far apart; the $n_{+}$ level is lower than the $n$. with very small energy spliting, $\Delta E=-0.19 \mathrm{eV}$.
In the case (i) TBI is only possible over $\sigma^{*}$ orbitals so that both levels are depressed, the $n_{\text {- being depressed more than }}$ the $n_{+}$so that the level order is reversed to $n_{-}$below $n_{+}$with small $\Delta E$ value. When however TBI is allowed through $\sigma$ onfy in the case (iii), both levels are elevated substantilly. In this case the elevation of $n_{+}$is more than twice of the elevation of $n_{-}$level resulting in a large energy splitting of $\Delta E=4.98 \mathrm{eV}$. This indicates that nearly $95 \%$ of the total TBI is attributable to the interaction of $n$ orbitals with bonds of $\sigma$ framework. In the distorted structure, as a result of TBI, $n_{-}$is lowered only by 0.71 eV whereas $n_{+}$is elevated as much as 8.76 eV . This is a natural consequence of narrow energy gap between $n$ and $\mathrm{HO}-\sigma$ of the $\sigma$ framework (Table 1) and the greater overlap between $n$ and $\sigma$ compared to that between $n$ and $\sigma^{*}$ (Table 4).

For the structure $D$, it can be seen that the effect of eliminating $\sigma$ is entirely on $n_{+}$whereas that of $\sigma^{*}$ is on $n_{-}$. The results for the structure E , on the other hand, indicates that due to a drastic reduction of the $n_{+}$elevation effect, the level ordering is reversed to $n_{+}$below $n_{-}$level ${ }^{9}$. Heje again the main cause of this level order reversal is the elimination of bond ( $\sigma$ ) orbitals; elimination of $a^{*}$ alone does not cause appreciable difference from that of the structure $D$. The removal


Figure 2. fMO Patterns of $\sigma$-framework for benzene: $S$ and A refer to symmetric and antisymmetric with respect to the plane perpendicular to molecular axis in dotted lines, respectively. Symmetry notations in parenthesis are symmetries with respect to the plane along molecular axis. Orbital notations signify e.g. $\sigma_{S 1}$ and $\sigma_{S}^{*}$ as the first symmetric $\sigma$ and symmetric $\sigma^{*}$ orbitials respectively.
of one side entirely from the molecule as in the structures $F$ and $G$, causes no great change in the effect of $n-\sigma$ or $n-a^{*}$ interaction relative to those in D , albeit TBI is somewhat greater in $\mathbf{F}$ compared with that in $\mathbf{D}$.
It is however evident that TBI is more efficient via the distorted part (in G) than via the undistorted part (in F).
Finally we will examine LCBO-MOs of $n_{+}$and $n_{-}$levels for various structures with $\sigma$ or $\sigma^{*}$ eliminated. We obtained FMO patterns of $\sigma$ framework using benzene as a model by carrying out the LCBO calculations with all the C-H bond deleted.
The patterns correspond to those obtained by the " C approximation". As shown in Figure 2, the HOMOs and LUMOs form threefold degenerate (or near degenerate) levels. The $\mathrm{HO}-\sigma$ and $\mathrm{LU}-\sigma^{*}$ for the siructure B , where lone-pairs are removed from the framework, should give the same MO patterns. The LCBO-MO coefficients given in Table 7 confirms this correspondence.

If we were to place $n$ orbitals on the two carbons, or N atoms as in pyrazine, on the molecular axis shown by dotted lines, the symınetry with respect to the plane perpendicular to this axis should be the one to be considered in conjunction with the symmetry of the $n_{ \pm}$orbitals.

Since only orbitals with the same symmetry are allowed to interact, the two levels can be expressed as,

$$
\begin{equation*}
n_{+}(S)=a_{1}\left(n_{1}+n_{2}\right)+a_{2} \sigma_{S 1}+a_{3} \sigma_{S 2}+a_{4} \sigma_{S}^{*} \tag{2}
\end{equation*}
$$

|  |  |  | $C_{1}$ | $C_{2}$ | $C_{3}$ | $C_{4}$ | $C_{5}$ | $C_{6}$ | $C_{7}$ | Ct | C9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A |  | $n_{4}^{*}$ | 0.468 | -0.495 | 0.241 | -0.171 | -0.183 | 0.000 | 0.000 | -0.025 | -0.073 |
|  |  | $n^{*}$ | 0.627 | 0.000 | 0.000 | 0.218 | -0.103 | 0.092 | -0.079 | -0.030 | $0.059$ |
| B | $\alpha=120$ | $\mathrm{HO}-\sigma$ | 0.000 | 0.398 | -0.398 | 0.187 | -0.187 | 0.000 | 0.000 | 0.038 | 0.038 |
|  |  | LU- $\sigma^{*}$ | 0.000 | 0.000 | 0.000 | 0.029 | -0.029 | 0.349 | 0.350 | -0.180 | -0.179 |
|  | $\alpha=90$ | HO-a | 0.000 | 0.696 | $-0.213$ | 0.036 | -0.226 | 0.000 | 0.000 | 0.021 | -0.179 0.047 |
|  |  | $\mathbf{L U - \sigma ^ { * }}$ | 0.000 | 0.000 | 0.000 | -0.021 | 0.019 | 0.047 | 0.136 | 0.259 | $-0.236$ |
| C | $\sigma$ | $\left\{{ }^{n}+\right.$ | 0.703 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | $-0.019$ | -0.043 |
|  |  | $n_{-}$ | 0.699 | 0.000 | 0.000 | 0.000 | 0.000 | 0.104 | -0.078 | -0.014 | 0.031 |
|  | $\sigma+\sigma^{*}$ | $\left\{{ }^{n_{+}}\right.$ | 0.707 |  |  |  |  |  |  | -0.014 |  |
|  |  | $n_{-}$ | 0.707 |  |  |  |  |  |  |  |  |
|  | $\sigma^{*}$ | $\left\{{ }^{n_{+}}\right.$ | 0.482 | 0.486 | 0.238 | -0.172 | -0.199 | 0.000 | 0.000 | 0.000 | 0.000 |
|  |  | $n_{-}$ | 0.638 | 0.000 | 0.000 | -0.204 | -0.111 | 0.000 | 0.000 | 0.000 | 0.000 |
| D | $\sigma$ | ${ }^{n+}$ | 0.501 | 0.000 | 0.468 | -0.183 | -0.114 | 0.000 | 0.000 | -0.051 | 0.031 |
|  |  | in- | 0.629 | 0.000 | 0.000 | -0.210 | -0.089 | 0.092 | -0.080 | -0.037 | 0.052 |
|  | $\sigma+\sigma^{*}$ | $\left\{{ }^{n}+\right.$ | 0.501 | 0.000 | 0.468 | -0.183 | -0.114 | 0.000 | 0.000 | -0.051 | 0.031 |
|  |  | $n_{-}$ | 0.640 | 0.000 | 0.000 | -0.213 | $-0.128$ | 0.000 | -0.081 | -0.028 | 0.050 |
|  | $\sigma^{*}$ | $n^{n_{+}}$ | 0.469 | 0.495 | 0.241 | -0.165 | -0.189 | 0.000 | 0.000 | -0.031 | 0.067 |
|  |  | $n_{-}$ | 0.640 | 0.000 | 0.000 | -0.213 | -0.128 | 0.000 | $-0.081$ | -0.028 | 0.050 |
| F | $\sigma$ | $n^{n}+$ | 0.512 | 0.000 | 0.478 | 0.000 | 0.223 | 0.000 | 0.000 | -0.044 | 0.023 |
|  |  | ${ }^{n}$ | 0.438 | 0.000 | 0.000 | 0.000 | -0.405 | 0.122 | -0.04t | -0.003 | $-0.024$ |
|  | $\sigma+a^{*}$ | ${ }^{n+}$ | 0.516 | 0.000 | 0.472 | 0.000 | -0.233 | 0.000 | 0.000 | -0.003 | -0.024 |
|  |  | $n_{-}$ | 0.491 | 0.000 | 0.000 | 0.000 | -0.406 | 0.000 | -0.047 | 0.000 | 0.023 |
|  | $\sigma^{*}$ | $n^{+}$ | 0.473 | 0.488 | 0.243 | -0.164 | -0.196 | 0.060 | 0.000 | 0.000 | 0.067 |
|  |  | $n_{-}$ | 0.633 | 0.000 | 0.000 | -0.224 | -0.104 | 0.000 | -0.083 | 0.000 | 0.053 |

$$
\begin{equation*}
n_{-}(A)=a_{1}^{\prime}\left(n_{1}-n_{2}\right)+a_{2}^{\prime} \sigma_{\lambda_{1}}^{*}+a_{3}^{\prime} \sigma_{\lambda_{2}}^{*}+a_{4}^{\prime} \sigma_{A} \tag{3}
\end{equation*}
$$

where coefficients $a_{i}$ and $a_{i}^{\prime}$ are mixing coefficients given by the perturbation theory as a form $\frac{H}{\Delta \varepsilon} \cong \frac{k S}{\Delta \varepsilon}$; thus the smaller the energy gap, and the larger the overlap, between two interacting orbitals, the greater the mixing. Based on these, we can immediately arrive at the following qualitative conclusions, which are indeed substantiated as shown in Table 7.

$$
\left.\begin{array}{l}
a_{1}>a_{2}>a_{3}>a_{4} \\
a_{1}^{\prime}>a_{4}^{\prime}>a_{2}^{\prime}>a_{3}
\end{array}\right\} \text { from energy gap, (Figure 2). }
$$

and in general, $a_{i}>a_{i}{ }^{\prime}$, from overlap, (Table 4). We now see why both $n_{+}$and $n_{-}$can interact with both $\mathrm{HO}_{-} \sigma$ and LU- $\sigma^{*}$ in pyrazine ( $N=$ odd system) in contrary to the rules tabulated (for chain compounds) in Table 1 ; due to degenerate FMOs involved in ring compounds (Figure 2), $n_{+}(S)$ can interact with one of the LU- $\sigma^{*}$ which has $S$ symmetry and $n_{-}(A)$ with one of the $\mathrm{HO}-\sigma$ of framework which has A symmetry as given in eqns (2) and (3).

Table 7 shows that the contribution of $\sigma_{23}$ increases dritmatically while that of $\sigma_{5 j}$ decreases as a result of bond angle distortion at the carbons 2 and 3 in the HO- $\sigma$ francwork MO (entry B). The interaction of $n_{+}$with the $\mathrm{HO}_{-\sigma}$ will thus be enhanced since the increase in $\sigma_{23}$ will increase the vicinal overlap between the two orbitals.

It is inferesting to note that the elimination of $\sigma$ in the structure $D$ and $F$ brings about an enhanced contribution of $\sigma_{12}^{*}$ MO, i.e., increase in $a_{2}^{\prime}$, in the $n_{-}$orbital so that $n_{-}$
level is lowered to the level of structure A where no elimination is involved. When however $\sigma^{*}$ is eliminated from $D$, $n_{+}$level is fully restored to that of structure A, but $\sigma^{*}$ elimination from $F$ does not restore the $n_{+}$level to that of structure A. This indicates that the $\sigma_{23}$ (in D ) is included in $\sigma_{S}$ orbitals but not in $\sigma_{s}^{*}$ orbital (Figure 2) which also mixes in to $n_{+}$level in eq (2).
We therefore conciude that although there is some mixing of $\mathrm{HO}-\sigma$ into $n_{-}$and of $\mathrm{LU}-\sigma^{*}$ into $n_{+}$due to $\sigma_{A}$ and $\sigma_{S}^{*}$ (Figure 2), the main interactions are those between $n_{+}$ and $\mathrm{HO}-\sigma$ and between $n$. and $\mathrm{LU}-\sigma^{*}$ as was found for chain compounds in Table 1.

Acknowledgements. We thank the Ministry of Education and the Korea Research Center for Theoretical Physics and Chemistry for support of this work.

## References

(1) 1. Lee, Bull. Korean Chem. Soc., 3. 140 (1982): Bull. Inst. Basic Sci. (Inha Univ.). 4, 25 (1983): Tetrahedron. 39, 2409 (1983).
(2) H. J. Dewey. R. D. Miller and J. Michl. J. Amer. Chem. Soc. 104, 5298 (1982).
(3) M. J. S. Dewar, R. C. Bingliam and D. H. Lo, MiNDO/3. No. 308, QCPE, Indiana Univ. (1975): R. C. Binghan. M. J. C. Dewar and D. H. Lo. J. Amer. Chem. Soc., 97, 1285 (1975).
(4) (a) J. P. Foster and F. Weinhold. Univ. of Wisconsin Theor. Chem. Inst. Report WIS-TCI-626; (b) F. Weinhold and T. K. Brunck. J. Amer. Chem. Soc., 98, 3745 (1976).
(5) S. Alexandratos, "GAUSSIAN-70: The write up" 1976 (OCPE program No. 236)
(6) (a) R. A. Finnegan, J. Org. Chem., 30, 1333 (1965): (b) A, Streitwieser, Jr., G. R. Ziegler, P. C. Mowery, A. Lewis and R. G. Lawler, J. Amer. Chem. Soc., 90, 1357 (1968): (c) R. P. Thummel. Acc. Chem. Res.. 13, 70 (1980); (d) R. Homann. Acc. Chem. Res., 4, 1 (1971).
(7) (a) T. K. Brunck and F. Weinhold, J. Amer. Chem. Soc., 101. 1700 (1979): J. Amer. Chem. Soc., 98. 4392 (1976): (b) P. A. Christiansen and W. E. Palke, Chem. Phys.

Lett., 31, 462 (1975): (c) R. Hoffmann. A. Imamura and W. J. Hehre, J. Amer. Chem. Soc., 90, 1499 (1968).
(d) N. D. Epiotis. R. L. Yate's. J. R. Larson. C. R. Kirmaier and F. Bernardi. J. Amer. Chem. Soc., 99, 8379 (1977).
(8) (a) A. Gavezotti and L. S. Bartell, J. Amer. Chem. Soc., 101, 5142 (1979): (b) J. Tyrrell, F. B. Weinstock and F. Weinhold. Int. J. Quantum Chem. XIX, 781 (1981).
(9) M. Ohsak, A. Imamura and K. Hirao. Bull. Chem. Soc. Japen, 51, 3443 (1978).

# Superplastic Deformation in the Low Stress Region 

Chun Hag Jang ${ }^{\dagger}$. Chang Hong Kim and Taikyue Ree<br>Department of Chemistry. Korea Advanced institute of Science and Technology, P. O. Box 150 Cheongyangni. Seoul 131, Kores (Received December 8, 1983)

Superplastic alloys generally exhibit a three-stage sigmoidal varition of stress ( $f$ ) with strain rate ( $s$ ), the stages being named region 1, 2 and 3 according to the increasing order of stress or strain rate. In the recent years, two different types of papers have been published on the plastic deformation of $\mathbf{Z n} \mathbf{- 2 2 \%}$ At eutectoid in region I differing in strain-rate sensitivity $\mathbf{m}$ ( $=d \ln f / d \ln \dot{s}$ ). In this paper, the data of the two groups have been analysed by applying Kim and Ree's theory of superplastic deformation. (1) We obtained the pararnteric values of $X_{z} / \alpha_{z}$ ) and $\beta_{z j}$ ( $g$ : grain boundary, $j=1,2$ indicating flow units) appearing in Kim and Ree's theory [Eq. (2a)]. (2) It was found that the value of $X_{82} / \alpha_{s^{2}}$ is small for the group data with small $m$, i.e.. $\alpha_{g 2}$, which is proportional to the size of flow unit $g^{2}$, is large whereas $\alpha_{s 2}$ is small for the groups data with large $m$, i.e., the size of the flow unit $g 2$ is small. In other words, the two types of behavior occur by the size difference in the flow units. (3) From the $\beta_{s j}$ value, which is proportional to the relaxation time of flow unit $g j$, the $\Delta H_{s j}^{*}$ for the flow prooess was calculated, and found that $\Delta H_{i}^{*}$ is large for the group data with small m whereas it is small for the group data with large m . (4) The flow-unit growth was studied, but it was concluded that this effect is not so important for differentiating the two groups.(5) The difference in $\alpha_{s 2}$ and in the growth rate of flow units is caused by minute impurities, crystal faults, elc., introduced in the sample preparation.

## 1. Iatroduction

Superplastic alloys generally exhibit a three-stage sigmoidal curve in the plot of $\log f$ (stress) vs. $\log \dot{s}$ (strain rate). The $\mathbf{Z n} \mathbf{- 2 2} \% \mathrm{Al}$ eutectoid is one of the best known superplastic alloys, and many studies have been carried out on this alloy. ${ }^{1 \sim 8}$ Experiments on $\mathbf{Z n}-22$ \% Al eutectoid alloys have revealed marked differences in the low stress region 1 so that the published data are divided into two distinct types as shown in Figure 1 . In Figure 1 curve A shows a normal sigmoidal type of superplastic deformation, ${ }^{1,3 n 6}$ while curve $B$ does not, ${ }^{2.7 .8}$ that is, curve $B$ has a higher strain-rate sensitivity ( $m=d \ln f / d \ln \dot{s}$ ) than curve A over the range of low stresses, region 1 . In spite of this obvious discrepancy in the strain-rate sensitivity, the two plastic deformations in the low stress region 1 show the same type of flow curves as will be shown later. In this paper much interests are paid on the superplastic deformation in the low stress region 1, and the behavior of superplastic deformation are analyzed according to the KimRee theory. ${ }^{9}$ The reason for the appearance of the two different types mentioned above will be clarified.

## 2. Theory

(a) Analysis of Flow Curves. According to the Ree-Eyring theory, ${ }^{10 \sim 12}$ the relation between stress and strain rate for dislocation movements are expressed as the following:

$$
\begin{equation*}
f=f_{d}=\sum_{i=1}^{m} \frac{X_{d i}}{\alpha_{d i}} \sinh ^{-1}\left(\beta_{d i} \dot{s}_{d}\right) \tag{1a}
\end{equation*}
$$

and

$$
\begin{align*}
\dot{\mathrm{s}}_{d} & =\left(\frac{\lambda_{2}}{\lambda_{1}} 2 k^{\prime}\right)_{d i} \sinh \left[\left(\frac{\lambda \lambda_{2} \lambda_{3}}{2 k T}\right)_{d i} f_{d i}\right]  \tag{1b}\\
& =\left(\beta_{d i}\right)^{-1} \sinh \left(\alpha_{d i} f_{d i}\right) \tag{ic}
\end{align*}
$$

where

$$
\begin{equation*}
\alpha_{d i}=\left(\frac{\lambda \lambda_{2} \lambda_{3}}{2 k T}\right)_{z i} \tag{1d}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\beta_{d i}\right)^{-1} \equiv\left(\frac{\lambda}{\lambda_{1}} 2 k^{\prime}\right)_{d i} \tag{1e}
\end{equation*}
$$

Here, the subscript $d$ represents dislocation, $f$ is the total stress applied on a dislocation slip plane, $f_{d i}$ is the stress acting on the $i$ th kind of dislocation flow units, $X_{d i}$ is the

