• Title/Summary/Keyword: Orbit Model

Search Result 416, Processing Time 0.024 seconds

Construction of a Thermal Vacuum Chamber for Environment Test of Triple CubeSat Mission TRIO-CINEMA

  • Jeon, Jeheon;Lee, Seongwhan;Yoon, Seyoung;Seon, Jongho;Jin, Ho;Lee, Donghun;Lin, Robert P.
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.335-344
    • /
    • 2013
  • TRiplet Ionospheric Observatory-CubeSat for Ion, Neutron, Electron & MAgnetic fields (TRIO-CINEMA) is a CubeSat with 3.14 kg in weight and 3-U ($10{\times}10{\times}30$ cm) in size, jointly developed by Kyung Hee University and UC Berkeley to measure magnetic fields of near Earth space and detect plasma particles. When a satellite is launched into orbit, it encounters ultra-high vacuum and extreme temperature. To verify the operation and survivability of the satellite in such an extreme space environment, experimental tests are conducted on the ground using thermal vacuum chamber. This paper describes the temperature control device and monitoring system suitable for CubeSat test environment using the thermal vacuum chamber of the School of Space Research, Kyung Hee University. To build the chamber, we use a general purpose thermal analysis program and NX 6.0 TMG program. We carry out thermal vacuum tests on the two flight models developed by Kyung Hee University based on the thermal model of the TRIO-CINEMA satellite. It is expected from this experiment that proper operation of the satellite in the space environment will be achieved.

Temperature dependence of photocurrent spectra for $AgGaSe_2$ single crystal thin film grown by hot wall epitaxy (Hot Wall Epitaxy(HWE) 법에 의해 성장된 $AgGaSe_2$ 단결정 박막의 광전류 온도 의존성)

  • Hong, Kwang-Joon;Bang, Jin-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.179-180
    • /
    • 2007
  • Single crystal $AgGaSe_2$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at $420^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating $AgGaSe_2$ source at $630^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of single crystal $AgGaSe_2$ thin films measured with Hall effect by van der Pauw method are $4.05{\times}\;10^{16}/cm^3$, $139\;cm^2/V{\cdot}s$ at 293 K. respectively. The temperature dependence of the energy band gap of the $AgGaSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=1.9501\;eV\;-\;(8.79{\times}10^{-4}\;eV/K)T^2$/(T + 250 K). The crystal field and the spin-orbit splitting energies for the valence band of the $AgGaSe_2$ have been estimated to be 0.3132 eV and 0.3725 eV at 10 K, respectively, by means of the phcitocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}So$ definitely exists in the $\Gamma_5$ states of the valence band of the $AgGaSe_2$. The three photocurrent peaks observed at 10 K are ascribed to the $A_1$-, $B_1$-, and $C_1$-exciton peaks for n = 1.

  • PDF

Photocurrent properties for $CdGa_2Se_4$ single crystal thin film grown by using hot wall epitaxy(HWE) method (Hot Wall Epitaxy(HWE)법에 의한 $CdGa_2Se_4$ 단결정 박막의 광전류 연구)

  • You, Sang-Ha;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.124-125
    • /
    • 2007
  • Single crystal $CdGa_2Se_4$ layers were grown on a thoroughly etched semi-insulating GaAs(100) substrate at $420^{\circ}C$ with the hot wall epitaxy (HWE) system by evaporating the polycrystal source of $CdGa_2Se_4$ at $630^{\circ}C$ prepared from horizontal electric furnace. The photocurrent and the absorption spectra of $CdGa_2Se_4$/SI(Semi-Insulated) GaAs(100) are measured ranging from 293K to 10K. The temperature dependence of the energy band gap of the $CdGa_2Se_4$, obtained from the absorption spectra was well described by the Varshni's relation, $E_g$(T) = 2.6400 eV - $(7.721{\times}10^{-4}\;eV/K)T^2$/(T + 399 K). Using the photocurrent spectra and the Hopfield quasicubic model, the crystal field energy$({\Delta}cr)$ and the spin-orbit splitting energy$({\Delta}so)$ for the valence band of the $CdGa_2Se_4$ have been estimated to be 106.5 meV and 418.9 meV at 10 K, respectively. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1^-},\;B_{1^-},\;and\;C_{11^-}$ exciton peaks.

  • PDF

Development and Application of 3-Dimensional Shielding Analysis Program to Analyze Total Ionizing Dose Level depending on the Satellite Structure Model (위성구조모델에 따른 방사선 총 이온화 조사량 예측을 위한 3차원 차폐두께 분석 프로그램의 개발 및 응용)

  • Cho, Young-Jun;Lee, Chang-Ho;Lee, Choon-Woo;Hwang, Do-Soon
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.68-75
    • /
    • 2008
  • Space radiation environments depend on satellite mission orbit, period, and date, and it can be predicted by simulation. Total Ionizing Dose(TID) can be predicted by Dose-depth Curve which only inform the dose level depending on the shielding thickness. So detail effective shielding analysis considering real structure is necessary to predict part level TID. For this purpose, program is developed to calculate shielding thickness distribution by structure modeling and ray trace from certain point in the structure. Finally TID at certain point in the 3-dimensional structure can be calculated by integration of shielding distribution result and dose-depth curve data. Using this program, TID is analyzed at part level certain point by modeling of equipment box structure in the satellite.

  • PDF

Photofragment Translational Spectroscopy of CH₂I₂ at 304 nm: Polarization Dependence and Energy Partitioning

  • 정광우;Temer S. Ahmadi;Mostafa A. El-Sayed
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.12
    • /
    • pp.1274-1280
    • /
    • 1997
  • The photodissociation dynamics of CH2I2 has been studied at 304 nm by state-selective photofragment translational spectroscopy. Velocity distributions, anisotropy parameters, and relative quantum yields are obtained for the ground I(2P3/2) and spin-orbit excited state I*(2P1/2) iodine atoms, which are produced from photodissociation of CH2I2 at this wavelength. These processes are found to occur via B1 ← A1 type electronic transitions. The quantum yield of I*(2P1/2) is determined to be 0.25, indicating that the formation of ground state iodine is clearly the favored dissociation channel in the 304 nm wavelength region. From the angular distribution of dissociation products, the anisotropy parameters are determined to be β(I)=0.4 for the I(2P3/2) and β(I*)=0.55 for the I*(2P1/2) which substantially differ from the limiting value of 1.13. The positive values of anisotropy parameter, however, show that the primary processes for I and I* formation channels proceed dominantly via a transition which is parallel to I-I axis. The above results are interpreted in terms of dual path formation of iodine atoms from two different excited states, i.e., a direct and an indirect dissociation via curve crossing between these states. The translational energy distributions of recoil fragments reveal that a large fraction of the available energy goes into the internal excitation of the CH2I photofragment; < Eint > /Eavl=0.80 and 0.82 for the I and I* formation channels, respectively. The quantitative analysis for the energy partitioning of available energy into the photofragments is used to compare the experimental results with the prediction of direct impulsive model for photodissociation dynamics.

Propulsion System Design and Optimization for Ground Based Interceptor using Genetic Algorithm

  • Qasim, Zeeshan;Dong, Yunfeng;Nisar, Khurram
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.330-339
    • /
    • 2008
  • Ground-based interceptors(GBI) comprise a major element of the strategic defense against hostile targets like Intercontinental Ballistic Missiles(ICBM) and reentry vehicles(RV) dispersed from them. An optimum design of the subsystems is required to increase the performance and reliability of these GBI. Propulsion subsystem design and optimization is the motivation for this effort. This paper describes an effort in which an entire GBI missile system, including a multi-stage solid rocket booster, is considered simultaneously in a Genetic Algorithm(GA) performance optimization process. Single goal, constrained optimization is performed. For specified payload and miss distance, time of flight, the most important component in the optimization process is the booster, for its takeoff weight, time of flight, or a combination of the two. The GBI is assumed to be a multistage missile that uses target location data provided by two ground based RF radar sensors and two low earth orbit(LEO) IR sensors. 3Dimensional model is developed for a multistage target with a boost phase acceleration profile that depends on total mass, propellant mass and the specific impulse in the gravity field. The monostatic radar cross section (RCS) data of a three stage ICBM is used. For preliminary design, GBI is assumed to have a fixed initial position from the target launch point and zero launch delay. GBI carries the Kill Vehicle(KV) to an optimal position in space to allow it to complete the intercept. The objective is to design and optimize the propulsion system for the GBI that will fulfill mission requirements and objectives. The KV weight and volume requirements are specified in the problem definition before the optimization is computed. We have considered only continuous design variables, while considering discrete variables as input. Though the number of stages should also be one of the design variables, however, in this paper it is fixed as three. The elite solution from GA is passed on to(Sequential Quadratic Programming) SQP as near optimal guess. The SQP then performs local convergence to identify the minimum mass of the GBI. The performance of the three staged GBI is validated using a ballistic missile intercept scenario modeled in Matlab/SIMULINK.

  • PDF

Development of Planetary Ephemeris Generation Program for Satellite (위성 탑재용 천문력 생성 프로그램 개발)

  • Lee, Kwang-Hyun;Cho, Dong-Hyun;Kim, Hae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.3
    • /
    • pp.220-227
    • /
    • 2019
  • The satellites in orbit use a sun reference vector from solar model based the ephemeris. To get the ephemeris, we use DE-Series, an ephemeris developed by the Jet Propulsion Laboratory (JPL), or the reference vector generation formula proposed by Vallado. The DE-Series provides the numerical coefficients of Chebyshev polynomials, which have the advantage of high precision, but there is a computational burden on the satellite. The Vallado's method has low accuracy, although the sun vector can be easily obtained through the sun vector generation equation. In this paper, we have developed a program to provide the Chebyshev polynomial coefficients to obtain the sun position coordinates in the inertial coordinate system. The proposed method can improve the accuracy compared to the conventional method and can be used for high - performance, high - precision nano satellite missions.

Estimation of Sejong VLBI IVP Point Using Coordinates of Reflective Targets with Their Measurement Errors (반사타겟 좌표 및 오차정보를 이용한 세종 VLBI IVP 위치계산)

  • Hong, Chang-Ki;Bae, Tae-Suk;Yi, Sangoh
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.717-723
    • /
    • 2020
  • Determination of local tie vectors between the space geodetic techniques such as VLBI (Very Long Baseline Interferometer), SLR (Satellite Laser Ranging), DORIS (Doppler Orbit determination and Radiopositioning Integrated on Satellite), GNSS (Global Navigation Satellite System) is essential for combination of ITRF (International Terrestrial Reference Frame). Therefore, it is required to compute IVP (Invariant Point) position of each space geodetic technique with high accuracy. In this study, we have computed Sejong VLBI IVP position by using updated mathematical model for adjustment computation so that the improvement on efficiency and reliability in computation are obtained. The measurements used for this study are the coordinates of reflective targets on the VLBI antenna and their accuracies are set to 1.5 mm for each component. The results show that the position of VLBI IVP together with its standard deviation is successfully estimated when they are compared with those of the results from previous study. However, it is notable that additional terrestrial surveying should be performed so that realistic measurement errors are incorporated in the adjustment computation process.

Comparative Study of the Effective Dose from Panoramic Radiography in Dentistry Measured Using a Radiophotoluminescent Glass Dosimeter and an Optically Stimulated Luminescence Detector

  • Lee, Kyeong Hee;Kim, Myeong Seong;Kweon, Dae Cheol;Choi, Jiwon
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1377-1384
    • /
    • 2018
  • Accurate measurement of the absorbed dose and the effective dose is required in dental panoramic radiography involving relatively low energy with a rotational X-ray tube system using long exposures. To determine the effectiveness of measuring the irradiation by using passive dosimetry, we compared the entrance skin doses by using a radiophotoluminescent glass dosimeter (RPL) and an optically stimulated luminescence detector (OSL) in a phantom model consisting of nine and 31 transverse sections. The parameters of the panoramic device were set to 80 kV, 4 mA, and 12 s in the standard program mode. The X-ray spectrum was applied in the same manner as the panoramic dose by using the SpekCalc Software. The results indicated a mass attenuation coefficient of $0.008226cm^2/g$, and an effective energy of 34 keV. The equivalent dose between the RPL and the OSL was calculated based on a product of the absorbed doses. The density of the aluminum attenuators was $2.699g/cm^3$. During the panoramic examination, tissue absorption doses with regard to the RPL were a surface dose of $75.33{\mu}Gy$ and a depth dose of $71.77{\mu}Gy$, those with regard to the OSL were surface dose of $9.2{\mu}Gy$ a depth dose of $70.39{\mu}Gy$ and a mean dose of $74.79{\mu}Gy$. The effective dose based on the International Commission on Radiological Protection Publication 103 tissue weighting factor for the RPL were $0.742{\mu}Sv$, $8.9{\mu}Sv$, $2.96{\mu}Sv$ and those for the OSL were $0.754{\mu}Sv$, $9.05{\mu}Sv$, and $3.018{\mu}Sv$ in the parotid and sublingual glands, orbit, and thyroid gland, respectively. The RPL was more effective than the OSL for measuring the absorbed radiation dose in low-energy systems with a rotational X-ray tube.

Prediction of the IGS RTS Correction using Polynomial Model at IOD Changes (IOD 변화 시점에서 다항식 모델을 사용한 IGS RTS 보정정보 예측)

  • Kim, Mingyu;Kim, Jinho;Kim, Jeongrae
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.6
    • /
    • pp.533-539
    • /
    • 2020
  • Real-time service (RTS) provided by IGS provides correction for GNSS orbit and clock via internet, so it is widely used in fields that require real-time precise positioning. However, the RTS signal may be lost due to an unstable Internet environment. When signal disconnection occurs, signal prediction can be performed using polynomial models. However, the RTS changes rapidly after the GNSS navigation message issue of data (IOD) changes, so it is difficult to predict when signal loss occurs at that point. In this study, we proposed an algorithm to generate continuous RTS correction information by applying the difference in navigation trajectory according to IOD change. The use of this algorithm can improve the accuracy of RTS prediction at IOD changes. After performing optimization studies to improve RTS prediction performance, the predicted RTS trajectory information was applied to precision positioning (PPP). Compared to the conventional method, the position error is significantly reduced, and the error increase along with the signal loss interval increase is reduced.