• Title/Summary/Keyword: Orbit Deployment

Search Result 30, Processing Time 0.023 seconds

An efficient solution for multibody dynamics and application to satellite deployment mechanism (효율적인 다물체 동역학 해법 및 인공위성 전개장치에의 응용)

  • 이기수;김진철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.680-685
    • /
    • 1992
  • Solar arrays and antennas of the satellite are usually stowed within the dimensions of the launch-vehicle fairing and deployed in the orbit. To solve such multibody dynamic problems, differential equations and algebraic equations are simultaneously solved, and special solution techniques are required. In this paper, Lagrange multipliers associated with the constraints are iteratively computed by monotonically reducing an appropriately defined constraint error vector, and the resulting equation of motion is solved by a well-established ODE technique. Defomable bodies as well as rigid bodies are treated, and applications to satellite solar arrays are explained.

  • PDF

Attitude Determination Algorithm Design and Performance Analysis for CNUSAIL-1 Cube Satellite (CNUSAIL-1 큐브위성의 자세결정 알고리듬 설계 및 성능분석)

  • Kim, Gyeonghun;Kim, Seungkeun;Suk, Jinyong;Kim, Jong-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.7
    • /
    • pp.609-618
    • /
    • 2015
  • This paper discusses the attitude determination of the CNUSAIL-1 cube-satellite. The primary mission of the CNUSAIL-1 is sail deployment and operation in low Earth orbit, and the secondary mission is to look into influence of the sail deployment on satellite attitude and orbit. The attitude determination strategy is proposed depending on three mission phases, and its performance and applicability are verified through numerical simulations. This study considers the following sensors: Sun sensors and a three-axis magnetometer as attitude reference sensors, and a three-axis MEMS gyroscope as an inertial attitude sensor. Because sensors used for cube satellites have relatively low performances and worse noise characteristics, an Extended Kalman filter (EKF) is applied to attitude determination. Additionally, it has the merits to deal with the Gaussian noises and to predict the attitude even with no measurements from reference attitude sensors, especially in the eclipse of the cube satellite. The performance of the EKF is compared to a deterministic attitude determination technique, QUEST(QUaternion ESTimation).

Optimal Design of Stiffness of Torsion Spring Hinge Considering the Deployment Performance of Large Scale SAR Antenna (전개성능을 고려한 대형 전개형 SAR 안테나의 회전스프링 힌지의 강성 최적설계)

  • Kim, Dong-Yeon;Lim, Jae Hyuk;Jang, Tae-Seong;Cha, Won Ho;Lee, So-Jeong;Oh, Hyun-Ung;Kim, Kyung-Won
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.3
    • /
    • pp.78-86
    • /
    • 2019
  • This paper describes the stiffness optimization of the torsion spring hinge of the large SAR antenna considering the deployment performance. A large SAR antenna is folded in a launch environment and then unfolded when performing a mission in orbit. Under these conditions, it is very important to find the proper stiffness of the torsion spring hinge so that the antenna panels can be deployed with minimal impact in a given time. If the torsion spring stiffness is high, a large impact load at the time of full deployment damages the structure. If it is weak, it cannot guarantee full deployment due to the deployment resistance. A multi-body dynamics analysis model was developed to solve this problem using RecurDyn and the development performance were predicted in terms of: development time, latching force, and torque margin through deployment analysis. In order to find the optimum torsion spring stiffness, the deployment performance was approximated by the response surface method (RSM) and the optimal design was performed to derive the appropriate stiffness value of the rotating springs.

Dynamics Modeling and Simulation of Korean Communication, Ocean, and Meteorology Satellite

  • No, Tae-Soo;Lee, Sang-Uk;Kim, Sung-Ju
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.2
    • /
    • pp.89-97
    • /
    • 2007
  • COMS(Communication, Oceanography, and Meteorology Satellite) is the first Korean multi-purpose satellite which is planned to be deployed at the altitude of geosynchronous orbit above the Korean peninsular. Noting that COMS is composed of the main BUS structure, two deployable solar panels, one yoke, five reactions wheels, COMS is treated as a collection of 9 bodies and its nonlinear equations of motion are obtained using the multi-body dynamics approach. Also, a computer program is developed to analyze the COMS motion during the various mission phase. Quite often, the equations of motion have to be derived repeatedly to reflect the fact that the spacecraft dynamics change as its configuration, and therefore its degree of freedom varies. However, the equations of motion and simulation software presented in this paper are general enough to represent the COMS dynamics of various configurations with a minimum change in input files. There is no need to derive the equations of motion repeatedly. To show the capability of the simulation program, the spacecraft motion during the solar array partial and full deployment has been simulated and the results are summarized in this paper.

Development and Performance Test of Solar Sail System for CNUSAIL-1 Cube Satellite (CNUSAIL-1 큐브위성의 태양돛 개발 및 성능시험)

  • Song, Su-A;Kim, Seungkeun;Suk, Jinyoung;Roh, Jin-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.3
    • /
    • pp.228-239
    • /
    • 2016
  • CNUSAIL-1 is a 3U-sized cube satellite with $4m^2$ small solar sail which is currently being developed at the Chungnam National University. The primary purpose of the CNUSAIL-1 is successful sail deployment in LEO and its operation for investigating its effect on satellite orbit and attitude as well as performing de-orbiting using the sail membranes as drag sail at the final phase. The system design and mechanism of solar sail deployment is introduced, and optical and tensile tests are carried out for the material of membranes and booms for its safety and performance verification. The ground test is carried out to verify its performance for sail deployment and satellite through comparison between folding methods by determining its folding patterns, thickness of spiral spring and angular velocity measurement in a low-friction environment.

Technology Trends and Research Direction of 6G Mobile Core Network (6G 모바일 코어 네트워크 기술 동향 및 연구 방향)

  • Ko, N.S.;Park, N.I.;Kim, S.M.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.4
    • /
    • pp.1-12
    • /
    • 2021
  • The competition to lead the next generation of mobile technologies, 6G, is underway while the deployment of 5G has not been implemented worldwide. ITU-R plans to develop technical requirements and standards after completing the 6G Vision by 2023. It can be considered too early to have a concrete view of the 6G core network architecture from this timeline. However, major stakeholders have started making their presence felt by publishing their views. From updated analysis on the technology and service trends proposed, we present a list of research directions on 6G core network from several perspectives: distribution of network functions to nearer edge locations; future fixed-mobile convergence, including low earth orbit satellites; highly-precise QoS guarantee; supporting an extremely wide variety of service requirements; AI-native automation and intelligence; and aligning with the evolution of radio access network.

A Linkage Based Space Debris Capture Device Utilizing Kevlar Wires (Kevlar wire를 이용한 링크 구동형 우주잔해 포획장치)

  • Jung, Jinwon;Hwang, Bohyun;Kim, Heekyung;Lee, Gunhee;Seo, Minseok;Lee, Dongyun;Kim, Byungkyu
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.5
    • /
    • pp.36-41
    • /
    • 2017
  • As the space debris in the satellite orbit increases, the risk of collision between the currently operating satellites and the space debris is continuously increasing. Therefore, in this study, we designed one-degree-of-freedom capture device using simple deployment mechanism. The capture device consists of four link groups connected with net. To increase the reliability, each link group is connected to one driving part so that the total degree of freedom is 1. In addition, the links were stowed on each side of the satellites so that they would not affect the janitor satellite mission. Finally, to confirm the possibility of deployment in the space environment, we carried out deployment experiments in water similar to the microgravity environment, and confirmed the deployment of capture device and the possibility of capturing target satellite.

Optimization of Drag-sail Storage Inspired from Blossom Method (개화형상을 모사한 가항력 돛 수납최적화)

  • Kim, Heekyung;Jung, Jinwon;Lee, Gunhee;Lee, Dongyun;Choi, Junwoo;Kim, Byungkyu
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.3
    • /
    • pp.16-21
    • /
    • 2017
  • In this paper, we propose a new folding method (the blossom method) to increase storage efficiency of drag-sail. To resolve the issue caused by increase in the thickness of the sail, we allowed margin space (offset) along the folding line and made holes at the intersection of offset lines to prevent distortion of film. In addition, to verify applicability of the blossom method, we fabricated quarter of the sail by using Mylar film and conducted a deployment experiment. If the blossom method is applied, storage ratio (storage volume: deployed area) is 1: 68.64, that is approximately 1.88 times more than the z-fold method of folding sailing.

Launch and On-orbit Environment Verification Test of Flight Model of Hinge Driving Type Holding and Release Mechanism based on the Burn Wire Release (열선분리방식을 이용한 힌지구동형 구속분리장치 비행모델의 발사 및 궤도환경 검증시험)

  • Lee, Myeong-Jae;Lee, Yong-Keun;Kang, Suk-Joo;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.3
    • /
    • pp.274-280
    • /
    • 2016
  • Hinge driving type holding and release mechanism based on the burn wire release for application of cubesat is main payload of STEP Cube Lab. (Cube Laboratory for Space Technology Experimental Project) to be launched at 2015. It has high constraint force, low shock level as well as surmounting drawbacks of conventional nichrome burn wire release method that has relatively low constraint force and system complexity for application of multi-deployable systems. In this paper, we have proposed a flight model of holding and release mechanism for the verification of the constraint force and deployment status signal acquisition. To validate the effectiveness of the flight model, launch and on-orbit environment verification test have been performed.

The 3-Axis Attitude Stabilization System Design of Picosat Hausat-1 (극소형 위성 HAUSAT-1의 3축 자세 안정화 시스템 설계)

  • Seo,Seung-Won;Jeong,Nam-Suk;Jang,Yeong-Geun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.7
    • /
    • pp.100-111
    • /
    • 2003
  • The HAUSAT-1(Hankuk Aviation University SATellite-1) will orbit at the altitude of 650km-800 km with 65 or 98 degree inclination angle. The effects of magnetic field and Earth gravity are more predominant than other space disturbances because the HAUSAT-1 will be positioned in LEO(Low Earth Orbit). The HAUSAT-1 design implements a magnetic control system and gravity-stable system which implement the solar panel deployment system. The simulation using MATLAB was performed to make sure the attitude stability of HAUSAT-1, which is based on the 8th order magnetic field model and non-linear equations of disturbances and the HAUSAT-1 attitude. The stability is investigated for two different HAUSAT-1 configurations and attitude which are affected by disturbances through simulation. The results for gravity-gradient stable and non gravity-gradient stable system are compared. Methodology of attitude stabilization was explored to develop an effective attitude control system for the HAUSAT-1 using magnetic torquers.