• Title/Summary/Keyword: Optometry

Search Result 579, Processing Time 0.026 seconds

Optical-effect Analysis of Nanoscale Collagen Fibers

  • Lee, Myoung-Hee;Kim, Young Chul
    • Current Optics and Photonics
    • /
    • v.4 no.2
    • /
    • pp.141-147
    • /
    • 2020
  • To understand the cause of the high light transmittance of the human eye, the optical effects of the collagen fibers of the stroma layer, which constitute the majority of the cornea, were analyzed. These collagen fibers, approximately 20 nm in diameter, have a regular arrangement. Accordingly, the optical properties of the collagen fibers and the fiber layer were analyzed by simulation. A standing wave was formed in the incident space by the overlapping incident light and the light reflected by the plate. In addition, it was confirmed that when the collagen fibers are arranged in a layer, the light transmittance periodically changes, depending on the number of fiber layers. The standing wave was formed in the incident space, and the light's intensity distribution was changed by the nanoscale collagen fibers in the section with the collagen layer, which affected the transmittance. To explain this phenomenon, the collagen fiber was defined as a second light source, and an attempt was made to describe the simulation results in terms of overlap of the incident light with the light emitted from the collagen fiber.

The Performance Stability of Ophthalmic Material with UV-Block Effect Containing Hydroxyl Benzophenone Group and Tungsten Nanoparticles

  • Kim, Duck-Hyun;Sung, A-Young
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.3
    • /
    • pp.97-103
    • /
    • 2017
  • In this study, the functional hydrogel ophthalmic lens containing tungsten oxide nanoparticles, 2,4-dihydroxy benzophenone and 2-hydroxy-4-(methacryloyloxy) benzophenone were manufactured. HEMA (2-hydroxyethyl methacrylate), MMA (methyl methacrylate), AA(acrylic acid), the cross-linker EGDMA (ethylene glycol dimethacrylate), the initiator AIBN (azobisisobutyronitrile) and the functional additives including tungsten oxide nanoparticles, 2,4-dihydroxy benzophenone, and 2-hydroxy-4-(methacryloyloxy) benzophenone were used respectively. The measurements of water content and refractive index of the sample was decreased and increased, respectively. And also, the UV transmittance of produced lens containing 2,4-dihydroxy benzophenone, 2-hydroxy-4-(methacryloyloxy) benzophenone and tungsten oxide nanoparticles was measured. Based on the results of this study, it is judged that the performance improvement increased over time when 2-hydroxy-4-(methacryloyloxy) benzophenone was used as an additive, while the use of tungsten oxide nanoparticles influenced on blue-ray-blocking effect of the hydrophilic lens.

Study on Distortion and Field of View of Contents in VR HMD

  • Son, Hojun;Jeon, Hyoung joon;Kwon, Soonchul
    • International journal of advanced smart convergence
    • /
    • v.6 no.1
    • /
    • pp.18-25
    • /
    • 2017
  • Recently, VR HMD (virtual reality head mounted display) has been utilized for virtual training, entertainment, vision therapy, and optometry. In particular, virtual reality contents are increasingly used for vision therapy and optometry. Accordingly, high-quality virtual reality contents such as a natural vision of life is required. Therefore, it is necessary to study the content production according to the optical characteristics of the VR HMD. The purpose of this paper is to suggest a proper FOV (field of view) of contents according to the distortion rate. We produced virtual reality contents and obtained distorted images by virtual camera. The distortion rate is calculated by using the distorted image. It is proved that the optimal FOV of the VR content with the minimum distortion is $90{\sim}100^{\circ}$. The results of this study are expected to be applied to the production of high quality contents.

Measurement of Heterophoria by Alternative Cover Method Using a Color Filters (색필터와 교대가림법을 이용한 새로운 사위측정)

  • Park, Sun-Young;Yu, Dong-Sik;Lee, Sun-Haeng;Kim, Sang-Yeob;Cho, Hyun-Gug
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05b
    • /
    • pp.894-897
    • /
    • 2010
  • 적청 색필터와 새로운 시표를 이용한 교대가림법(Twinkle R/B법)이 임상적으로 새로운 사위검사법으로 사용될 수 있는지 그 가능성을 평가하였다. 대학생 109명(남 73명, 여 36명)을 대상으로 Twinkle R/B법, Modified Thorington법, Howell법, 그리고 Von Graefe법으로 40cm 거리에서 사위검사를 실시하였다. 사위검사는 검사자별로 반복 측정을 실시하여 검사방법에 따른 신뢰도를 평가하였다. 실험 결과, 검사자의 반복측정에 따른 신뢰도는 Twinkle R/B법이 가장 높았다. 결과적으로 Twinkle R/B법은 신뢰도가 높은 사위검사법으로서 임상에서 충분히 사용 가능한 것으로 나타났다.

  • PDF

Preparation and Analysis of Functional Hydrogel Lenses Using Cerium Iron Hydroxide Nanoparticles

  • Shin, Su-Mi;Sung, A-Young
    • Journal of Integrative Natural Science
    • /
    • v.13 no.1
    • /
    • pp.13-18
    • /
    • 2020
  • This study used cerium iron hydroxide nanoparticle with HEMA (2-hydroxyethyl methacrylate), the cross-linker EGDMA (ethylene glycol dimethacrylate), NVP (N-vinyl-2-pyrrolidone) and the initiator AIBN (azobisisobutyronitrile) for copolymerization. Also, the physical properties of the prepared lenses were compared, and their applicability as polymers for ophthalmic materials was experimented. The results of the measurement showed that the UV blocking rate and the wettability increased with the cerium iron hydroxide nanoparticles addition ratio, and the refractive index and water content were not affected. Thus, the produced copolymer is expected to be useful as a functional contact lens material while satisfying the basic physical properties of the hydrogel contact lens.

Fabrication of Spiropyran-functionalized Photochromic Hydrogel Lenses

  • Lee, Cheol Woo;Badon, Isabel Wen;Kim, Boram;Ryu, Geun-Chang;Kim, Ho-Joong
    • Journal of Integrative Natural Science
    • /
    • v.11 no.1
    • /
    • pp.39-43
    • /
    • 2018
  • Poly(hydroxyethyl methacrylate)-based hydrogels were surface-functionalized with spiropyran (SP) derivatives to obtain photochromic contact lenses. The contact lens reversibly changes from colorless to purple as response to UV light since colorless ring-closed SP state converts to purple ring-opened merocyanine (MC) state under UV light irradiation. The purple contact lens emits red light at 640 nm. Importantly, the presence of SP segments did not significantly affect the equilibrium water content (EWC) of the lens. SP-functionalized hydrogel lenses may find potential applications in developing light-adaptive ophthalmic materials.

Hydrogel Contact Lens Materials with Improved UV Blocking Effect

  • Kim, Duck-Hyun;Sung, A-Young
    • Journal of Integrative Natural Science
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • HEMA, AA, MMA, and EGDMA as crosslinking agent and AIBN as an initiator, and 2,4-dihydroxybenzophenone, 2-ethylhexyl-trans-4-methoxy-cinnamate, 2-hydroxy-4-(methacryloyloxy)benzophenone as additives at 0.1-1.0% ratios were used to manufacture hydrophilic ophthalmic lenses through thermal polymerization before their physical properties were measured. The results showed that the samples containing of 2,4-dihydroxybenzophenone and 2-ethylhexyl-trans-4-methoxy-cinnamate resulted in a decrease of the UV blocking performance after high-pressure sterilization whereas the sample containing 2-hydroxy-4-(methacryloyloxy)benzophenone showed no change in the UV blocking performance. It is judged that this is induced by presence or absence of an acyl functional group in benzophenone.

Comparative Study of Polymerization Environment for Hydrogel Ophthalmic Lens

  • Kim, Duck-Hyun;Sung, A-Young
    • Korean Journal of Materials Research
    • /
    • v.28 no.12
    • /
    • pp.696-701
    • /
    • 2018
  • This study is carried out to evaluate the commercial feasibility of the room temperature and thermal polymerization method as a lens manufacturing method. All samples are found to be transparent after polymerization, thereby indicating that their physical and surface properties are suitable for hydrogel ophthalmic lenses. The optical and physical properties of the lenses are compared. The water content of the samples that are prepared via a room temperature polymerization process decreases with the addition of MMA as compared to the water content of the samples that are prepared via thermal polymerization. When MMA and DMA are used as an additive for improving functionality, the wettability of the lenses increases. By measuring the AFM, the surface roughness is shown to improve more than MMA and DMA. Therefore, it is judged to be an appropriate process for manufacturing hydrogel lenses with high functionality.

Preparation and Characterization of Ophthalmic Hydrophilic Silicone Lens Containing Zinc Oxide and Iron Oxide Nanoparticles

  • Shin, Su-Mi;Sung, A-Young
    • Korean Journal of Materials Research
    • /
    • v.31 no.8
    • /
    • pp.427-432
    • /
    • 2021
  • This study uses silicone monomer, DMA, crosslinking agent EGDMA, and initiator AIBN as a basic combination to prepare hydrogel lenses using fluorine-based perfluoro polyether and iron oxide and zinc oxide nanoparticles as additives. After manufacturing the lens using iron oxide nanoparticles and zinc oxide nanoparticles, the optical, physical properties, and polymerization stability are evaluated to investigate the possibility of application as a functional hydrogel lens material. As a result of this experiment, it is found that the addition of the wetting material containing fluorine changes the surface energy of the produced hydrogel lens, thereby improving the wettability. Also, the addition of iron oxide and zinc oxide nanoparticles satisfies the basic hydrogel ophthalmic lens properties and slightly increases the UV blocking performance; it also increases the tensile strength by improving the durability of the hydrogel lens. The polymerization stability of the nanoparticles evaluated through the eluate test is found to be excellent. Therefore, it is judged that these materials can be used in various conditions as high functional hydrogel lens material.

Compatibility of POSS Composites with Silicone Monomers and Application to Contact Lenses Material

  • Lee, Min-Jae;Lee, Kyungmun;Sung, A-Young
    • Journal of the Korean Chemical Society
    • /
    • v.64 no.6
    • /
    • pp.354-359
    • /
    • 2020
  • This research was conducted to analyze the compatibility of used monomers and produce the high functional contact lens material containing silicone monomers. Silicone monomer (Sil-OH), Trimethylsilylmethacrylate (TSMA) were used as additives for the basic combination of Polyhedral Oligomeric Silsesquioxane (POSS), methyl methacrylate (MMA) and methyl acrylate (MA). And also, the materials were copolymerized with ethylene glycol dimethacrylate (EGDMA) as the cross-linking agent, AIBN (thermal polymerization initiator) as the initiator. It is judged that the fabricated lenses of all combinations are optically excellent and thus used monomers have good compatibility. Measurement of the optical and physical characteristics of the manufactured hydrophilic lens material were varied in each case. Especially TSMA with POSS increases the oxygen permeability and Sil-OH with POSS increases the wettability by the addition of Sil-OH. These materials were considered to have compatibility each other, so it can be used in functional contact lens material.