• Title/Summary/Keyword: Optoelectronic Devices

Search Result 263, Processing Time 0.031 seconds

Optical Characterization of Cubic and Pseudo-cubic Phase Perovskite Single Crystals Depending on Laser Irradiation Time

  • Byun, Hye Ryung;Jeong, Mun Seok
    • Applied Science and Convergence Technology
    • /
    • v.27 no.2
    • /
    • pp.42-45
    • /
    • 2018
  • Photovoltaic and optoelectronic devices based on hybrid metal halide perovskites ($MAPbX_3$; $MA=CH_3NH_3{^+}$, $X=Cl^-$, $Br^-$, or $I^-$) are rapidly improving in power conversion efficiency. Also, during recent years, perovskite single crystals have emerged as promising materials for high-efficiency photovoltaic and optoelectronic devices because of their low defect density. Here we show that the light soaking effect of mixed halide perovskite ($MAPbBr_{3-x}I_x$) single crystals can be explained using photoluminescence, time-resolved photoluminescence, and Raman scattering measurements. Unlike Br-based single crystal, Br/I mixed single crystal show a strong light soaking effect under laser irradiation condition that was related to the existence of multiple phases.

Nanocarbon/silver Nanowire Hybrid Flexible Transparent Conducting Film Technology (탄소나노튜브와 은나노와이어 복합 유연투명전극 필름 기술)

  • Han, Joong Tark
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.4
    • /
    • pp.323-330
    • /
    • 2016
  • The flexible transparent conducting films (TCFs) are required to realize flexible optoelectronic devices. 1D nanomaterials such as carbon nanotubes (CNTs), metal nanowires are good candidates to replace indium tin oxide that is currently used to fabricate transparent electrode. Particularly, silver nanowires are used to produce flexible TCFs. In this review, we introduce TCF technologies based on silver nanowires/CNTs hybrid structures. CNTs can compromise drawbacks of silver nanowires for applications in high performance TCFs for optoelectronic devices.

GaN-based Ultraviolet Passive Pixel Sensor for UV Imager

  • Lee, Chang-Ju;Hahm, Sung-Ho;Park, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.152-156
    • /
    • 2019
  • An ultraviolet (UV) image sensor is an extremely important optoelectronic device used in scientific and medical applications because it can detect images that cannot be obtained using visible or infrared image sensors. Because photodetectors and transistors are based on different materials, conventional UV imaging devices, which have a hybrid-type structure, require additional complex processes such as a backside etching of a GaN epi-wafer and a wafer-to-wafer bonding for the fabrication of the image sensors. In this study, we developed a monolithic GaN UV passive pixel sensor (PPS) by integrating a GaN-based Schottky-barrier type transistor and a GaN UV photodetector on a wafer. Both individual devices show good electrical and photoresponse characteristics, and the fabricated UV PPS was successfully operated under UV irradiation conditions with a high on/off extinction ratio of as high as $10^3$. This integration technique of a single pixel sensor will be a breakthrough for the development of GaN-based optoelectronic integrated circuits.

Optoelectronic Properties Enhanced by Photodynamic Patterning of Azo Polymers

  • Kim, Dong-Yu
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.25-26
    • /
    • 2006
  • Azobenzene functionalized polymers have been extensively investigated due to the potential applications in the areas of optical switching, optical elements, optical information storage, and nonlinear optics. These applications are mainly achievable due to photoinduced properties of azobenzene groups with photoisomerization and photoinduced anisotropy. We report applications to the optoelectronic devices using inscribed one-(1D) and two-dimensional (2D) SRGs on azo polymer films. The inscribed holographic SRGs patterns were useful to control or enhance optoelectronic properties such as transparent electrode patterning, hybrid solar cell and ultraviolet GaN-based LED.

  • PDF

Optoelectronic Characteristics of Hydrogen and Oxygen Annealed Si-O Superlattice Diode

  • Seo, Yong-Jin
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.2
    • /
    • pp.16-20
    • /
    • 2001
  • Optoelectronic characteristics of the superlattice diode as a function of deposition temperature and annealing conditions have been studied. The multilayer nanocrystalline silicon/adsorbed oxygen (nc/Si/O) superlattice formed by molecular beam epitaxy (MBE) system. Experimental results showed that deposition temperature of 550$^{\circ}C$, followed by hydrogen annealing leads to best results, in terms of optical photoluminescence (PL) and electrical current-voltage (I-V) characteristics. Consequently, the experimental results of multilayer Si/O superlattic device showed the stable photoluminescence and good insulating behavior with high breakdown voltage. This is very useful promise for Si-based optoelectronic devices, and can be readily integrated with conventional silicon ULSI processing.

  • PDF

Poly-4-vinylphenol and Poly (melamine-co-formaldehyde)-based Tungsten Diselenide (WSe2) Doping Method

  • Nam, Hyo-Jik;Park, Hyung-Youl;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.194.1-194.1
    • /
    • 2015
  • Transition metal dichalcogenide (TMD) with layered structure, has recently been considered as promising candidate for next-generation flexible electronic and optoelectronic devices because of its superior electrical, optical, and mechanical properties.[1] Scalability of thickness down to a monolayer and van der Waals expitaxial structure without surface dangling bonds (consequently, native oxides) make TMD-based thin film transistors (TFTs) that are immune to the short channel effect (SCE) and provide very high field effect mobility (${\sim}200cm^2/V-sec$ that is comparable to the universal mobility of Si), respectively.[2] In addition, an excellent photo-detector with a wide spectral range from ultraviolet (UV) to close infrared (IR) is achievable with using $WSe_2$, since its energy bandgap varies between 1.2 eV (bulk) and 1.8 eV (monolayer), depending on layer thickness.[3] However, one of the critical issues that hinders the successful integration of $WSe_2$ electronic and optoelectronic devices is the lack of a reliable and controllable doping method. Such a component is essential for inducing a shift in the Fermi level, which subsequently enables wide modulations of its electrical and optical properties. In this work, we demonstrate n-doping method for $WSe_2$ on poly-4-vinylphenol and poly (melamine-co-formaldehyde) (PVP/PMF) insulating layer and adjust the doping level of $WSe_2$ by controlling concentration of PMF in the PVP/PMF layer. We investigated the doping of $WSe_2$ by PVP/PMF layer in terms of electronic and optoelectronic devices using Raman spectroscopy, electrical measurements, and optical measurements.

  • PDF

Fully Room Temperature fabricated $TaO_x$ Thin Film for Non-volatile Memory

  • Choi, Sun-Young;Kim, Sang-Sig;Lee, Jeon-Kook
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.28.2-28.2
    • /
    • 2011
  • Resistance random access memory (ReRAM) is a promising candidate for next-generation nonvolatile memory because of its advantageous qualities such as simple structure, superior scalability, fast switching speed, low-power operation, and nondestructive readout. We investigated the resistive switching behavior of tantalum oxide that has been widely used in dynamic random access memories (DRAM) in the present semiconductor industry. As a result, it possesses full compatibility with the entrenched complementary metal-oxide-semiconductor processes. According to previous studies, TiN is a good oxygen reservoir. The TiN top electrode possesses the specific properties to control and modulate oxygen ion reproductively, which results in excellent resistive switching characteristics. This study presents fully room temperature fabricated the TiN/$TaO_x$/Pt devices and their electrical properties for nonvolatile memory application. In addition, we investigated the TiN electrode dependence of the electrical properties in $TaO_x$ memory devices. The devices exhibited a low operation voltage of 0.6 V as well as good endurance up to $10^5$ cycles. Moreover, the benefits of high devise yield multilevel storage possibility make them promising in the next generation nonvolatile memory applications.

  • PDF

Micro-Heatsink Fabricated by Electroless Plating (무전해 도금으로 제조한 마이크로 히트싱크)

  • An Hyun Jin;Son Won Il;Hong Joo Hee;Hong Jae-Min
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.2 s.31
    • /
    • pp.11-16
    • /
    • 2004
  • Electronic devices are getting smaller due to integration of electronic chip, and heat generated in electronic devices can cause loss of performance and/or reliability of the devices. In this research, metals such as gold, nickel and copper are plated onto a porous membrane by electroless plating method to make an efficient micro-heatsinks. Electroless plating includes sensitization and activation steps in pre-treatment steps. A polycarbonate(PC) membrane was sensitizied, activated and deposited in each metal solution for plating. Among manufactured microfibrils, heat transfer and radiation properties of Ni-microfibril with high surface area were more effective than those of $Au^-$ and Cu-microfibril.

  • PDF

High power efficient solar cell using the organic polymer materials (유기고분자 재료를 이용한 우수한 효율의 태양전지)

  • Lee, Junghoon;Park, Jukwang;Chang Seoul
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.356-357
    • /
    • 2003
  • Organic materials are suitable for use in photoelectric conversion devices. Thus, Organic semiconductors are promising materials for photovoltaic devices and other optoelectronic applications such as light emitting diodes(LED). The organic solar cell seems to be the usefulness in comparison with the inorganic solar cell in terms of workability, ease of processing, low cost, flexibility and area expansion. (omitted)

  • PDF