• Title/Summary/Keyword: Optimum water temperatures

Search Result 166, Processing Time 0.025 seconds

Effects of Shipping Temperature on Quality Changes of Cucumber, Eggplant, Melon, and Cherry-tomato Fruit during Simulated Export and Marketing (오이, 가지, 멜론 및 방울토마토 과실의 수송온도가 모의 수출 및 유통중 품질에 미치는 영향)

  • Park, Se Won;Kwon, Yong;Chi, Soung Han;Hong, Se Jin;Park, YounMoon
    • Horticultural Science & Technology
    • /
    • v.17 no.2
    • /
    • pp.118-122
    • /
    • 1999
  • Quality changes of fruit vegetables were investigated during simulated export and marketing to find out the optimum shipping temperature. Fruit vegetables were loaded into a small refrigerated-container and kept for four days at various temperatures, and fruit quality was assayed immediately after harvest, 4 days after storage and 4 days after marketing at ambient temperature. In 'Back Seong Ilho' cucumber fruits, fresh weight loss was further reduced at $13^{\circ}C$ and $11^{\circ}C$ than at $15^{\circ}C$ and room temperature. Soluble solid contents remained at relatively lower levels when cucumbers were stored at $13^{\circ}C$ and $11^{\circ}C$. In 'Chun Ryang' eggplant fruits, fresh weight loss was greatly increased at all the temperatures (room, $12^{\circ}C,\;9^{\circ}C,\;and\;6^{\circ}C$). However, flesh browning, a primary quality factor of eggplant fruit, was most effectively inhibited at $9^{\circ}C$, whereas chilling injury occurred in fruit flesh at $6^{\circ}C$. Water loss of 'Eals Seinu' melon fruits was most inhibited and soluble solid contents at harvest were maintained for the longest period at $4^{\circ}C$. In 'Pe Pe' cherry tomatoes, storage at $10^{\circ}C$ and $7^{\circ}C$ seemed to more effectively inhibit metabolic changes and the incidence of cracking, the severest disorder than room temperature. But the fruits stored at $10^{\circ}C$ contained higher level of soluble solids than those at $7^{\circ}C$. The overall results suggest that the optimum shipping temperature range is 11 to $13^{\circ}C$ for cucumbers, around $9^{\circ}C$ for eggplant fruit, $4^{\circ}C$ for melons, and $10^{\circ}C$ for cherry tomatoes.

  • PDF

The Influence of Water Temperature and Salinity on Filtration Rates of the Hard Clam, Gomphina veneriformis (Bivalvia) (수온과 염분의 변화에 따른 연령별 대복 (Gomphina veneriformis: Bivalvia) 의 여과율 변동)

  • Shin, Hyun-Chool;Lee, Jung-Ho;Jeong, Hyo-Jin;Lee, Jung-Sick;Park, Jung-Jun;Kim, Bae-Hoon
    • The Korean Journal of Malacology
    • /
    • v.25 no.2
    • /
    • pp.161-171
    • /
    • 2009
  • The present study was performed to describe the influence of water temperature and salinity on filtration rates of the venus clam, Gomphina veneriformis, a suspension-feeding (filter-feeding) bivalve species. The calmswere collected from the eastern coastal area of Sokcho, Gangneung and Jumunjin at Kangwon-do, Korea, during December 2006 and May 2007. Isochrysis galbana (KMCC H-002) cells as food organisms were indoor-cultured by f/2 medium, and were used to measure the filtration rate of clam. Filtration rates of clam were measured by indirect method. Cell concentration of food organisms were determined by direct counting cells used the hemacytometer under the light microscope. The filtration rates of clams by water temperature sharply increased with temperatures up to $15^{\circ}C$ as optimum temperature and above this temperature, the filtration rates decreased exponentially. Venus clams showed very low filtration rates at low salinity (10-15 psu) and maximum values at high salinity (30-35 psu). Regardless of water temperature and salt change, 2-year class clams showed high filtration rates, but low in 4-year-class. Polynomial regression curves with water temperature were shifted to the left in low temperature region. Thermal coefficient $Q_{10}$ values showed much higher values at low temperature range than at high temperature range, too. These results indicate that the venus clam is more sensitive in cold water. Polynomial regression curves with salinity were shifted to the right in high saline region. According to this study, the venus clam Gomphina veneriformis, subtidal filter-feeding bivalve, was the stenothermal organism, inhabited mainly in low temperature and the stenohaline, in high saline waters.

  • PDF

Effect of Water Temperature on the Egg Development of Pearl Oyster, Pinctada fucata martensii and Pacific Oyster, Crassostrea gigas (진주조개, Pinctada fucata martensii와 참굴, Crassostrea gigas의 난발생에 미치는 수온의 영향)

  • CHANG Young Jin;CHOI Youn Hee;CHANG Yun Jeong;CHOI Seok Won
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.6
    • /
    • pp.559-564
    • /
    • 2000
  • We studied to find out the effect of water temperature on the egg development of pearl oyster, Pincata fucata martensii and Pacific oyster, Crassostrea gigas. The optimum water temperatures for egg development were $20{\~}25^{\circ}C$ in P. fucata martensii and $15{\~}25^{\circ}C$ in C. gigas. The required time from fertilization to D-shaped lana was $41.7\;hours\;at\;20^{\circ}C$ and 27.5 hours at $25^{\circ}C$ in P. fucata martensii, and 35.3 hours at $15^{\circ}C$, 26.3 hours at $20^{\circ}C$ and 17.6 hours at$ 25^{\circ}C$ in C. gigas, respectively. The relationships between the water temperature ($WT:^{\circ}C$) and the required time (h: hour) from fertilization to each developmental stage were given as follows; P. fucata martensii Up to 8-cell $$1/h=0.0463WT-0.6945 (r^2=0.9702)$$ Up to morula $$1/h=0.0196WT-0.2184 (r^2=0.8118)$$ Up to trochophore $$1/h=0.0076WT-0.0802 (r^2=0.8756)$$ Up to D-shaped larva $$1/h=0.0031WT-0.0380 (r^2=0.9075)$$ C. gigas Up to 8-cell $$1/h=0.0210WT-0.1123 (r^2=0.9862)$$ Up to morula $$1/h=0.0143WT-0.1077 (r^2=0.9833)$$ Up to trochophore $$1/h=0.0052WT-0.0218 (r^2=0.9857)$$ Up to D-shaped lawn $$1/h=0.0029WT-0.0170 (r^2=0.9689)$$ Biological minimum temperature for egg development of P. fucata martensii and C. gigas was calculated as $$12.3^{\circ}C and 5.7{\circ}C$$, respectively.

  • PDF

Effect of Seed Treatments on Germination and Growth of Agrimonia pilosa Ledeb (선학초의 종자처리에따른 발아와 생육)

  • Lee, Yong-Ho;Park, Jeong-Min;Lee, Seong-Tae;Chung, Dae-Soo;Kim, Hyeun-Kyeung
    • Korean Journal of Medicinal Crop Science
    • /
    • v.8 no.2
    • /
    • pp.129-133
    • /
    • 2000
  • The experiment was conducted to increase germination of Agrimonia pilosa seeds, one of the natural medicinal plants, by various treatments, and also the effects of seed treatments on the growth of plants after sowing in field. The optimum temperature for germination of A. pilosa seeds was $20^{\circ}C$ after 20 days stratification duration at $4^{\circ}$, the germination rate than highest, 86% at that temperature. The stratification increased germination rate in all the temperatures treated, shortened $26{\sim}32$ days of germination period and promoted more 20% germination rate than the other treatments. Flowing water, low temperature, $GA_3$ and NaOCl were not effective for germination and high temperature reduced germination rate. At the early growth stage, the plant height was taller $3{\sim}4\;cm$, one or more leaves were increased by the stratification treatments, and also stratification increased the number of leaves per plants 10 or more leaves compare with other treatments at harvesting stages. By stratification, the flowering date was 5 days earlier, June 18th than other treatments due to earlier sprouting.

  • PDF

Effects of Climatic Condition on Stability and Efficiency of Crop Production (농업 기상특성과 작물생산의 효율 및 안전성)

  • Robert H. Shaw
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.4
    • /
    • pp.296-313
    • /
    • 1982
  • At a time when world population and food supply are in a delicate balance, it is essential that we look at factors to improve this balance. We can alter the environment to better fit the plant's needs, or we can alter the plant to better fit the environment. Improved technology has allowed us to increase the yield level. For moderately detrimental weather events technology has generally decreased the yield variation, yet for major weather disasters the variation has increased. We have raised the upper level, but zero is still the bottom level. As we concentrate the production of particular crops into limited areas where the environment is closest to optimum, we may be increasing the risk of a major weather related disaster. We need to evaluate the degree of variability of different crops, and how weather and technology can interact to affect it. The natural limits of crop production are imposed by important ecological factors. Production is a function of the climate, the soil, and the crop and all activities related to them. In looking at the environment of a crop we must recognize these are individuals, populations and ecosystems. Under intensive agriculture we try to limit the competition to one desired species. The environment is made up of a complex of factors; radiation, moisture, temperature and wind, among others. Plant response to the environment is due to the interaction of all of these factors, yet in attempting to understand them we often examine each factor individually. Variation in crop yields is primarily a function of limiting environmental parameters. Various weather parameters will be discussed, with emphasis placed on how they impact on crop production. Although solar radiation is a driving force in crop production, it often shows little relationship to yield variation. Water may enter into crop production as both a limiting and excessive factor. The effects of moisture deficiency have received much more attention than moisture excess. In many areas of the world, a very significant portion of yield variation is due to variation in the moisture factor. Temperature imposes limits on where crops can be grown, and the type of crop that can be grown in an area. High temperature effects are often combined with deficient moisture effects. Cool temperatures determine the limits in which crops can be grown. Growing degree units, or heat accumulations, have often been used as a means of explaining many temperature effects. Methods for explaining chilling effects are more limited.

  • PDF

Studies on Alternaria and Corynespora Blights of Sesame (참깨 검은무늬병(病) 및 잎마름병(病)에 관한 연구(硏究))

  • Yu, Seung-Heon;Kim, Hong-Gi;Gang, Yeo-Gyu;Park, Jong-Seong
    • The Korean Journal of Mycology
    • /
    • v.9 no.4
    • /
    • pp.169-176
    • /
    • 1981
  • Survey of sesame crop in the cultivators' field in the district of Daejeon, Yuseong, Sintanjin, Nonsan and Keumsan revealed that Alternaria and Corynespora blights of sesame were wide spread and caused severe damage to sesame plants. Symptoms of a new disease of sesame in Korea caused by Alternaria sesami were spreading, dark-brown to black, water-soaked lesions which often could be traced the entire length of the stem. In severe infections, several lesions coalesced together involving a major portion of the blade and the infected leaves dried and usually dropped off. Symptoms of Corynespora blight, caused by Corynespora cassiicola, were irregular shaped, concentrically-zoned, light brown to reddish brown lesions which later coalesced and caused defoliation. Stem lesions were long, reddish brown streaks that often coalesced, blighting the plants. The optimum temperatures for mycelial growth of A. sesami and C. cassiicola were about $27^{\circ}C$ and sporulations of these 2 fungi were stimulated under alternating light and darkness. Mycelial growth and sporulation of A. sesami and C. cassiicola were the greatest on sesame oatmeal agar (SOA) and potato dextrose agar (PDA), respectively.

  • PDF

Synthesis of Hexagonal β-Ni(OH)2 Nanosheet as a Template for the Growth of ZnO Nanorod and Microstructural Analysis (ZnO 나노 막대 성장을 위한 기판층으로서 hexagonal β상 Ni(OH)2 나노 시트 합성 및 미세구조 분석)

  • Hwang, Sung-Hwan;Lee, Tae-Il;Choi, Ji-Hyuk;Myoung, Jae-Min
    • Korean Journal of Materials Research
    • /
    • v.21 no.2
    • /
    • pp.111-114
    • /
    • 2011
  • As a growth-template of ZnO nanorods (NR), a hexagonal $\beta-Ni(OH)_2$ nanosheet (NS) was synthesized with the low temperature hydrothermal process and its microstructure was investigated using a high resolution scanning electron microscope and transmission electron microscope. Zinc nitrate hexahydrate was hydrolyzed by hexamethylenetetramine with the same mole ratio and various temperatures, growth times and total concentrations. The optimum hydrothermal processing condition for the best crystallinity of hexagonal $\beta-Ni(OH)_2$ NS was determined to be with 3.5 mM at $95^{\circ}C$ for 2 h. The prepared $Ni(OH)_2$ NSs were two dimensionally arrayed on a substrate using an air-water interface tapping method, and the quality of the array was evaluated using an X-ray diffractometer. Because of the similarity of the lattice parameter of the (0001) plane between ZnO (wurzite a = 0.325 nm, c = 0.521 nm) and hexagonal $\beta-Ni(OH)_2$ (brucite a = 0.313 nm, c = 0.461 nm) on the synthesized hexagonal $\beta-Ni(OH)_2$ NS, ZnO NRs were successfully grown without seeds. At 35 mM of divalent Zn ion, the entire hexagonal $\beta-Ni(OH)_2$ NSs were covered with ZnO NRs, and this result implies the possibility that ZnO NR can be grown epitaxially on hexagonal $\beta-Ni(OH)_2$ NS by a soluble process. After the thermal annealing process, $\beta-Ni(OH)_2$ changed into NiO, which has the property of a p-type semiconductor, and then ZnO and NiO formed a p-n junction for a large area light emitting diode.

Effect of Pre-heating Conditions on Extraction Yield of Phelinus linteus Tea (가열 전처리 조건이 상황버섯 차의 추출수율에 미치는 영향)

  • Park, Min-Kyung;Kim, Cherl-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.5
    • /
    • pp.653-659
    • /
    • 2008
  • In this study, the optimum pre-heating condition was investigated to improve water extraction yield of Phelinus linteus tea. Pre-heating was carried out using drying oven or hot plate at different temperatures and times, and extraction yield was estimated by measuring optical density at 370 nm and soluble solid content. The highest optical density and soluble solid content of Phelinus linteus tea were observed when pre-heated at $70{\sim}80^{\circ}C$ for 30 minutes in drying oven. Pre-heating in drying oven resulted in also faster color changes of Phelinus linteus tea at lower temperature. According to the organoleptic evaluation, pre-heated Phelinus linteus tea in drying oven at $70{\sim}80^{\circ}C$ for 30 minutes was preferred compared to the non-treated. In conclusion, pre-heating in drying oven at $70{\sim}80^{\circ}C$ for 30 minutes was found to be the most efficient conditions to increase extraction yield of Phelinus linteus tea.

The Microstructural Properties Change Owing to the Sintering Condition of T42 High Speed Steel Produced by Powder Injection Molding Process (분말 사출 성형법으로 제조된 T42 고속도 공구강의 소결 조건에 따른 조직 특성 변화)

  • Do, Kyoung-Rok;Choi, Sung-Hyun;Kwon, Young-Sam;Cho, Kwon-Koo;Ahn, In-Shup
    • Journal of Powder Materials
    • /
    • v.17 no.4
    • /
    • pp.312-318
    • /
    • 2010
  • High speed steels (HSS) were used as cutting tools and wear parts, because of high strength, wear resistance, and hardness together with an appreciable toughness and fatigue resistance. Conventional manufacturing process for production of components with HSS was used by casting. The powder metallurgy techniques were currently developed due to second phase segregation of conventional process. The powder injection molding method (PIM) was received attention owing to shape without additional processes. The experimental specimens were manufactured with T42 HSS powders (59 vol%) and polymer (41 vol%). The metal powders were prealloyed water-atomised T42 HSS. The green parts were solvent debinded in normal n-Hexane at $60^{\circ}C$ for 24 hours and thermal debinded at $N_2-H_2$ mixed gas atmosphere for 14 hours. Specimens were sintered in $N_2$, $H_2$ gas atmosphere and vacuum condition between 1200 and $1320^{\circ}C$. In result, polymer degradation temperatures about optimum conditions were found at $250^{\circ}C$ and $480^{\circ}C$. After sintering at $N_2$ gas atmosphere, maximum hardness of 310Hv was observed at $1280^{\circ}C$. Fine and well dispersed carbide were observed at this condition. But relative density was under 90%. When sintering at $H_2$ gas atmosphere, relative density was observed to 94.5% at $1200^{\circ}C$. However, the low hardness was obtained due to decarbonization by hydrogen. In case of sintering at the vacuum of $10^{-5}$ torr at temperature of $1240^{\circ}C$, full density and 550Hv hardness were obtained without precipitation of MC and $M_6C$ in grain boundary.

Optimization of Manufacturing Condition for Fried Garlic Flake and the Physicochemical Properties (튀긴 마늘 flake 제조조건의 최적화 및 이화학적 특성)

  • Kim, Kyeong-Yee;Lee, Eun-Kyung
    • Korean journal of food and cookery science
    • /
    • v.28 no.6
    • /
    • pp.805-811
    • /
    • 2012
  • This study was carried out in order to optimize the manufacturing condition of fried garlic flakes as well as to investigate the physicochemical properties of the flakes. Fried garlic flake samples were prepared as follows: garlic was sliced by a thickness of 1.5 mm, 2.0 mm, 2.5 mm, which were measured by a thickness gage. The samples were fried in vegetable oil under different temperatures of $140{\sim}150^{\circ}C$, $160{\sim}170^{\circ}C$ and $180{\sim}185^{\circ}C$. The compression strength depending on the height (h) was measured in order to find the thickness effect by the rheometer (force control: 50 N, h: 3.25 mm). Moreover, the sample with 1.5 mm thickness showed crisp phenomena of the split compared with the crush shape of the 2.0 mm and 2.5 mm thick samples. The result of strength for time dependence showed a sample with a thickness of 1.5 mm, which was measured 5~9 times more than the 2.0 mm and 2.5 mm thick samples. We thought the reason that the 1.5 mm sample had less response power equivalent to compression force than the other samples. Alliin has been found to affect the immune responses in the blood, it is a derivative of the amino acid cysteine and is also quite heat stable. The LC system with a UV detection at 210 nm consists of a separation on a Zorbax TMS column and isocratic elution with water and ACN as a mobile phase. The alliin contents of raw and fried garlic flake under $140{\sim}150^{\circ}C$, $160{\sim}170^{\circ}C$ and $180{\sim}185^{\circ}C$ were 18.10 mg/mL, 14.0 mg/mL, 11.6 mg/mL and 11.1 mg/mL, respectively. The decrement of alliin content under different temperature was a small quantity hence, we confirmed that the increasing manufacturing temperature was not affected by the alliin content. Examining for the particle structure of fried garlic flakes by a polarization microscope, the color of the sample treated at $160{\sim}170^{\circ}C$ was pure yellow. Furder, the fiber shaped particle, which has an effect on the tough texture, almost did not appear compared to the different temperature conditions. Finally, the sensory test for the preference of fried garlic flake under different conditions was carried out and the scores for various sensory characteristics were surveyed. According to the physicochemical measurements and sensory evaluation, we confirmed that the optimum manufacturing condition of fried garlic flake was 1.5 mm thick at a temperature of $160{\sim}170^{\circ}C$.