• 제목/요약/키워드: Optimum water temperature

검색결과 1,141건 처리시간 0.028초

자동차용 기관의 냉각수 온도조절 최적화에 관한 연구(I) (A Study on the Optimum Cooling Water Temperature Control of an Automotive Engine(I))

  • 박경석;신진식;이경우
    • 오토저널
    • /
    • 제14권2호
    • /
    • pp.34-43
    • /
    • 1992
  • The purpose of this study is to consider the performance and exhaust characteristics in the practical engine according to the cooling water temperature change of engine and to set up the optimum cooling condition and to obtain the optimum operating condition of thermostat in the cooling system. In order to accomplish the purpose of this study, authors have used the following procedure. 1. This study is to investigate the influence of the cooling water temperature on the engine performance and the exhaust gas, authors regulated the cooling water temperature by using the special closing circuit and measured the concentration of exhaust gas by using the exhaust gas measuring system in the exhaust pipe. 2. This study carried out the experiment by regulating the opening degree of throttle valve and engine speed in the dynamometer and by changing the cooling water temperature, at the same time kept air-fuel ratio constant and made the spark ignition time MBT(Minimum spark advance for Best Torque) 3. This study measured the cooling water temperature by using the K-type thermocouple centring around the easy over-heated parts and by installing a special closing circuit. Therefore, in this study, authors intend to examine the influence of the cooling water temperature on the engine performance, exhaust gas and present the basic materials needed in the engine design including the optimum operating time control system for the cooling water temperature.

  • PDF

냉.온열 동시 제조시스템의 성능분석(I)-Simulation (Performance Analysis of Simultaneous Heating & Cooling Water Making System(I)-Simulation)

  • 박성룡;박준택;안영훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.266-271
    • /
    • 2001
  • In this study, the performance of the simultaneous heating & cooling water making system using R134a was investigated by simulation. The most important effect upon heating COP was intermediate pressure depending on input water temperature. With the input water temperature of $10^{\circ}C\;and\;20^{\circ}C$, optimum intermediate pressure were 923 and 1040kPa, respectively. At that optimum intermediate pressure, the maximum heating COP of the system operated between $0^{\circ}C$ evaporating temperature and $70^{\circ}C$ condensing temperature were 4.15 and 3.83. With installation of the subcoolers in high or low pressure section, the system COP was increased by reducing the refrigerant mass flow rate. Under the optimum pressure and $10^{\circ}C$ input water temperature, it was found that heating COP was maximized when the low-subcooler and high-subcooler capacity rate were taken by 14% and 13%, respectively.

  • PDF

온도변화가 흙의 다짐과 압축강도에 미치는 영향 (Temperature Effects on the Compaction and Compressive Strength of Soils)

  • 김재영
    • 한국농공학회지
    • /
    • 제15권4호
    • /
    • pp.3137-3146
    • /
    • 1973
  • This study was to investigate the effects of compaction, compressive strength and Atterberg limits in accordance with the temperatures changes. It was conducted on four soils-KJ, JJ, MH, SS-at temperatures of -1, 1, 3, 5, 7, 10, 15, 19, $22^{\circ}C$. These tests were obtained the maximum dry density and the optimum moisture content of four soils in accordance with temperature changes by using distilled water and $CaCl_2$ 10% solution, and were put to the compressive strength tests on remolded specimens of soils compacted at the optimum moisture content. The result of the study can be summarized as follows; The maximum dry density increased with an increase in temperature, and the use of $CaCl_2$ 10% solution had higher maximum dry density than distilled water. The optimum moisture content decreased with an increase in temperature, and the use of $CaCl_2$ 10% solution had lower optimum moisture content than distilled water. The maximum compressive strength was shown high peak from $7^{\circ}C\;to\;15^{\circ}C$, and the use of $CaCl_2$ 10% solution had higher maximum compressive strength than distilled water. The liquid limit and plasticity index decreased with an increased in temperature. It is estimated that the use of $CaCl_2$ 10% solution can lower the minimum compacted temperature from $2^{\circ}C\;to\;4^{\circ}C$ in low temperature.

  • PDF

난방부하와 온수온돌의 방열성능을 고려한 적정 공급온수온도 산출방법에 관한 연구 (A Study on the Method of Estimating Optimum Supply Water Temperature Considering the Heating Load and the Heat Emission Performance of Radiant Floor Heating Panel)

  • 최정민;이규남;류성룡;김용이;여명석;김광우
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.795-800
    • /
    • 2006
  • A common approach to achieve better thermal comfort with hydronic radiant floor heating system is supply water temperature control. This is the control method through which supply water temperature is varied with outdoor temperature. In this study, a comprehensive, yet simple calculation method to find optimum supply water temperature is evaluated by combining heat loss from the building and heat emission from the hydronic radiant floor heating system. And then the control performance of suggested calculation method is confirmed through experiment. It is shown that indoor air temperature is stably maintained around the set point.

  • PDF

중형 이산화탄소 급탕기의 최적 설계 (Optimum Design of Middle-Sized CO2 Water Heater)

  • 박한빛;윤린;김영득
    • 설비공학논문집
    • /
    • 제25권4호
    • /
    • pp.173-179
    • /
    • 2013
  • Middle-sized $CO_2$ water heater having compressor power of 7.45 kW was designed, and its performances were experimentally tested. Besides, optimum design of the $CO_2$ water heater was conducted by cycle simulation. When ambient temperature of $7^{\circ}C$ and hot water outlet temperature of $80^{\circ}C$ the $CO_2$ water heater showed the COP of 3.2. As hot water temperature increased the COP is getting decreased due to significant increase of compressor power consumption compared to increasing rate of heating capacity. When ambient temperature increased from $-3^{\circ}C$ to $12^{\circ}C$ the COP increased by 30%. The optimum components design of a gas cooler, an internal heat exchanger, and an evaporator were conducted, and the experimental correlation between amount of EEV opening and ambient temperature, and hot water temperature was suggested.

Optimum Water Potential, Temperature, and Duration for Priming of Rice Seeds

  • Lee, Suk-Soon;Kim, Jae-Hyeun;Hong, Seung-Beom;Kim, Min-Kyeong;Park, Eui-Ho
    • 한국작물학회지
    • /
    • 제43권1호
    • /
    • pp.1-5
    • /
    • 1998
  • Experiments were carried out to find out the optimum water potential, temperature, and duration for the priming of rice seeds, Oryza sativa L. (cv. Ilpumbyeo) for better germination at sub-optimal temperatures. Seeds were primed in 0, -0.2, -0.4, -0.6, -0.8, and -1.0 MPa PEG (polyethylene glycol) solutions at $25^{\circ}C$. The optimum water potential for seed priming, the highest water potential at which rice seeds did not germinate, was -0.6 MPa. To find out optimum priming temperature and duration rice seeds were primed in -0.6 MPa PEG solution and 0 MPa (water as a control) for various durations at 15 and $25^{\circ}C$ and the seeds were germinated at 17, 20, and $25^{\circ}C$. Considering germination rate and speed, the optimum priming time in water (0 MPa) was 4 days at 15$^{\circ}C$ and 1 day at $25^{\circ}C$, while 4 days was the optimum priming time in a -0.6 MPa PEG solution, regardless of the priming temperature. Priming reduced the actual time of germination, especially at sub-optimal temperatures. Priming did not affect germination rate in -0.6 MPa PEG solution at 15$^{\circ}C$, but overpriming reduced the final germination rate in water at 15$^{\circ}C$ and in -0.6 PEG solution at $25^{\circ}C$. Total sugars and $\alpha$-amylase activity induced during the seed priming were negatively correlated with the final germination rate and there was no noted relationship with the speed or uniformity of germination.

  • PDF

냉동사이클의 최적 설계조건 (Oplimum Design Conditions for a Basic Refrigeration Cycle)

  • 조성환
    • 대한설비공학회지:설비저널
    • /
    • 제15권4호
    • /
    • pp.356-361
    • /
    • 1986
  • An optimum design condition for a basic refrigeration cycle is defined as the condition which minimizes the total cost of heat exchanges (condenser and evaporator) and compressor for the refrigeration effect. Thermodynamic properties of ammonia (R717) are approximated by rational functions in order to obtain the optimum condition for a basic refrigeration cycle. Optimum condition depends on the heat capacity rates (mass flow rate times specific heat) of cooling water and brine used in condenser and evaporator. The difference between the cooling water temperature and condensation temperature at the optimum condition increases as the heat capacity rates and the coat of heat exchangers relative to the cost of compressor increase. Numerical examples of optimum conditions are obtained when the condensation temperature is $30^{\circ}C$ and the evaporator temperature is $-10^{\circ}C$.

  • PDF

O/W 나노에멀젼 분산안정성에 미치는 보관온도의 영향 (Effect of Storage Temperature on the Dispersion Stability of O/W Nano-emulsions)

  • 이예은;유인상
    • KSBB Journal
    • /
    • 제29권5호
    • /
    • pp.385-391
    • /
    • 2014
  • In this study, the emulsion dispersion stability of optimizing storage temperature was investigated. The system was based on oil/water (O/W) emulsions. In order to evaluate the stability, mean diameter of droplet was measured as a function of temperature with various mixed hydrophilic lipophilic balance (HLB). In addition, the correlations between phase inversion temperature (PIT) and the optimum storage temperature were probed. In this system, majority of the smallest droplet was shown at temperature of $20^{\circ}C$ below PIT. Whether the temperature was increased or decreased from the optimum, size of the droplet increased. According to the mixed HLB, the particle size and optimum storage temperature were also affected. As the concentrations of surfactant were increased, the size of particle decreased with lower optimum temperature for storage. If the surfactant (4 wt%) were mixed with HLB, the optimum storage temperature was $21^{\circ}C$ for maintaining the size of smallest droplet at 108.3 nm in diameter. At above optimum condition, increased size of particle was observed approximately 4 % increases from 108.2 nm to 112.3 nm after 600 hours. The size of particle in emulsion was maintained stably without any considerable effect of Ostwald ripening phenomena at the optimum storage temperature with low polydispersity index.

A Study on the Optimum Mix Proportion of the Mass Concrete Designed as Massive and Deep Structure

  • Kwon Yeong-Ho;Lee Hwa-Jin
    • 콘크리트학회논문집
    • /
    • 제17권2호
    • /
    • pp.293-302
    • /
    • 2005
  • This study describes data from determination of the optimum mix proportion and site application of the mass concrete placed in bottom slab and side wall having a large depth and section as main structures of LNG in-ground tank. This concrete requires low heat hydration, excellent balance between workability and consistency because concreting work of LNG in-ground tank is usually classified by under-pumping, adaptation of longer vertical and horizontal pumping line than ordinary pumping condition. For this purpose, low heat Portland cement and lime stone powder as cementitious materials are selected and design factors including unit cement and water content, water-binder ratio, fine aggregate ratio and adiabatic temperature rising are tested in the laboratory and batch plant. As experimental results, the optimum unit cement and water content are selected under $270kg/m^3$ and $l55{\~}l60 kg/m^3$ separately to control adiabatic temperature rising below $30^{\circ}C$ and to improve properties of the fresh and hardened concrete. Also, considering test results of the confined water ratio($\beta$p) and deformable coefficient(Ep), $30\%$ of lime stone powder by cement weight is selected as the optimum replacement ratio. After mix proportions of 5cases are tested and compared the adiabatic temperature rising($Q^{\infty}$, r), tensile and compressive strength, modulus of elasticity, teases satisfied with the required performances are chosen as the optimum mix design proportions of the side wall and bottom slab concrete. $Q^{\infty}$ and r are proved smaller than those of another project. Before application in the site, properties of the fresh concrete and actual mixing time by its ampere load are checked in the batch plant. Based on the results of this study, the optimum mix proportions of the massive concrete are applied successfully to the bottom slab and side wall in LNG in-ground tank.

적수온(21℃)에서 사육한 성장기 넙치 (Paralichthys olivaceus)의 배합사료 적정 공급률 (Optimum Feeding Rate in Growing Olive Flounder Paralichthys olivaceus Fed Practical Extruded Pellet at Optimum Water Temperature (21℃))

  • 김성삼;김강웅;김경덕;이봉주;한현섭;김재원;배승철;이경준
    • 수산해양교육연구
    • /
    • 제26권4호
    • /
    • pp.789-796
    • /
    • 2014
  • This study was conducted to investigate the effects of feeding rate on growth performance, blood components and histology of growing olive flounder. The experiment was carried out to determine the optimum feeding rate of the fish (initial fish mean weight of $97{\pm}3.0$ g) at the optimum water temperature. Two replicated groups of fish were fed commercial diet at the feeding rates of 0, 1.0, 1.65 and 2.3% body weight (BW)/day and satiation. Feeding trial was conducted under a flow-through system with ten 1.2 metric ton aquaria receiving filtered seawater at $21{\pm}2^{\circ}C$ for three weeks. Weight gain and specific growth rate (SGR) for fish fed to satiation were significantly higher than those for the unfed fish and for fish fed at 1.0 and 1.65% BW/day. There were no significant differences in values of such parameters between fish fed at 1.65% and those fed at 2.3% BW/day and between fish fed at 2.3% and those fed to satiation. Weight gain and SGR for the unfed fish were significantly lower than those for fish in the other treatments. All the tissues (hepatopancreas, kidney and anterior intestine) were in good condition in fish fed the experimental diet at different feeding rates. This result indicates that the optimum feeding rates of olive flounder (97-160 g) was approximately 2.52% BW/day at the optimum water temperature.