• 제목/요약/키워드: Optimum shape

검색결과 1,368건 처리시간 0.026초

비대칭 형상 압연 공정에 대한 연구 (Study on the Irregular Shape Rolling Process)

  • 김용철;김동진;김병민
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 제3회 압연심포지엄 논문집 압연기술의 미래개척 (Exploitation of Future Rolling Technologies)
    • /
    • pp.98-106
    • /
    • 1999
  • In this study cold rolling process for the irregular cross-sectional shape has been investigated. The product analyzed in present study is the steel cutter, which is frequently used to cut the desired shape on leather. Because steel cutter always has a irregular cross-section, after rolling process the workpiece is severely bended to every direction. The bending of the workpiece affects the processed performed after rolling such as heat treatment and grinding, then that of the workpiece becomes more severe. In this study, therefore, to prevent the bending of the workpiece to the left and right sides. rigid-plastic finite element method has been utilized and in order to find optimal roll geometry rapidly, one dimensional equal interval search technique has been also introduced. By using both rigid plastic finite element method and optimum technique, cold rolling process for the irregular cross-sectional shape has been successfully investigated.

초공동(超空洞) 하의 수중 주행체 캐비데이터 형상최적설계 (Shape Optimization of Cavitator for a Supercavitating Projectile Underwater)

  • ;최주호
    • 대한기계학회논문집A
    • /
    • 제28권10호
    • /
    • pp.1566-1573
    • /
    • 2004
  • When a projectile travels at high speed underwater, supercavitating flow arises, in which a huge cavity is generated behind the projectile so that only the nose, i.e., the cavitator, of the projectile is wetted, while the rest of it should be surrounded by the cavity. In that case, the projectile can achieve very high speed due to the reduced drag. Furthermore if the nose of the body is shaped properly, the attendant pressure drag can be maintained at a very low value, so that the overall drag is also reduced dramatically. In this study, shape optimization technique is employed to determine the optimum cavitator shape for minimum drag, given certain operating conditions. Shape optimization technique is also used to solve the potential flow problem fur any given cavitator, which is a free boundary value problem having the cavity shape as unknown a priori. Analytical sensitivities are derived for various shape parameters in order to implement a gradient-based optimization algorithm. Simultaneous optimization technique is proposed for efficient cavitator shape optimization, in which the cavity and cavitator shape are determined in a single optimization routine.

초공동(超空洞) 하의 수중 주행체 캐비테이터 형상최적설계 (Shape Optimization of Cavitator for a Supercavitating Projectile Underwater)

  • 최주호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1876-1881
    • /
    • 2003
  • When a projectile travels at high speed underwater, supercavitating flow arises, in which a huge cavity is generated behind the projectile so that only the nose, i.e., the cavitator, of the projectile is wetted, while the rest of it should be surrounded by the cavity. In that case, the projectile can achieve very high speed due to the reduced drag. Furthermore if the nose of the body is shaped properly, the attendant pressure drag can be maintained at a very low value, so that the overall drag is also reduced dramatically. In this study, shape optimization technique is employed to determine the optimum cavitator shape for minimum drag, given certain operating conditions. Shape optimization technique is also used to solve the potential flow problem for any given cavitator, which is a free boundary value problem having the cavity shape as unknown a priori. Analytical sensitivities are derived for various shape parameters in order to implement a gradient-based optimization algorithm. Simultaneous optimization technique is proposed for efficient cavitator shape optimization, in which the cavity and cavitator shape are determined in a single optimization routine.

  • PDF

통계적 방법을 이용한 선박용 벨로우즈의 형상 최적 설계 (Shape Optimum Design of Ship's Bellows Using Statistical Method)

  • 김현수;김효겸;이재섭;김형준
    • 한국해양공학회지
    • /
    • 제21권5호
    • /
    • pp.55-60
    • /
    • 2007
  • Bellows are mechanical components which prevent the damage of system by absorption of the vibration and the displacement of axle and radial direction. Thermal piping system is expanded by the fluid of the high temperature from the heat engine inside. At this time, bellows prevent the damage of the piping due to the thermal expansion. Recently, design of bellows is required to fit some other operational environments which are not suggested in the E.J.M.A code book. And it is difficult to produce and to maintain bellows of high temperature and high pressure bemuse of its complicated shape and this causes the manufacturing cost to rise. The objective of this study is to determine optimum shape of bellows which can endure in the high temperature and high pressure. The maximum stress has an effect on the fatigue life of bellows, therefore it needs to be minimized. This study attempts to find a shape which minimizes the stress occurring in the bellows by the design of experiment. The model used in this study is not presented in the E.J.M.A code book, therefore, from the result of design of experiment we find the factors which give effects on the characteristic value and we presents the recession model using the RSM, which can predict the characteristic values depending on the change of factor values.

TIG용접에서 가스력을 이용한 비드형상제어를 위한 실드가스 노즐의 최적 형상에 관한 연구 (II) - 벤투리 노즐의 위보기 자세 용융금속제어 효과 - (A Study on Optimum Shape of Shield Gas Nozzle for Bead Shape Control in TIG Welding using Gas Force (II) - Effect of Molten Metal Control by Venturi Nozzle in Overhead Position -)

  • 함효식;서지석;최윤환;이연원;조상명
    • Journal of Welding and Joining
    • /
    • 제29권3호
    • /
    • pp.58-63
    • /
    • 2011
  • Bead shape control with gas force process has been developed to overcome the concave back bead in pipe orbital welding. However, It is impossible to make a convex back bead using the existing gas nozzle, because it has high gas-consuming and low gas force. The purpose of this paper, to develop optimum shape of nozzle which to reduce the consumption of gas, maximizing the shield gas force with low cost and high productivity coincide the Green welding. In this paper venturi-type nozzle was compared with existing CP-type nozzle by TIG pulse welding in overhead position. As a result, CP-type occurs the wormholes in the overhead position, but the Venturi-type without the pore and formed a good bead appearance.

세일링요트 핀킬 형상별 저항특성 비교연구 (A Study on the Comparison of Resistance Performance for Shape of Fin Keel of Sailing Yacht)

  • 추경훈;심상목;박충환;진송한;권성훈
    • 한국항해항만학회지
    • /
    • 제30권5호
    • /
    • pp.375-379
    • /
    • 2006
  • 세일링요트의 추진시 횡류를 방지하기 위하여 선체 하부에 킬을 부착하게 되는데 이는 세일의 양력에 의한 횡흐름을 멈추게 하는 역할과 힐 모멘트를 없애고 복원력을 생기게 한다. 이는 안전성에 영향을 미치기 때문에 적절한 킬의 선택은 중요하다고 할 수 있다. 또한 킬 하부에 부가물의 부착은 발라스트 중량중심을 낮춤으로서 선체 복원력에 중요한 영향을 미치므로 킬에 대한 최적형상 도출은 매우 중요하다. 이에, 본 연구에서는 저항성능 향상을 위한 동일 침수표면적의 핀킬 하부 부가물에 따른 저항특성을 비교 실험하였다. 실험방법으로는 회류 수조를 이용하여 3가지 핀킬 하부 부가물 모형킬을 모형선에 부착하여 형상별 저항특성을 비교 분석하였다. 분석 결과에 따른 저항감소 최적 형상을 도출 하였다.

코안다효과를 이용한 제진기 스크린의 최적설계를 위한 수치적 연구 (A Numerical Study for Optimum Design of Dust Separator Screen Based on Coanda Effect)

  • 윤성민;김용선;신희재;고상철
    • 한국기계가공학회지
    • /
    • 제17권6호
    • /
    • pp.177-185
    • /
    • 2018
  • There is a need to study dust separator screens with good drainage efficiency while effectively filtering suspended solids and other contaminants entering the intake pumping station, the drainage pumping station and the mediation pumping station, the cooling water inlet of the power plant, and the like. In this paper, Numerical studies were conducted for the optimal design of the dust separator screen using the Coanda effect. The shape of the dust separator screen is important, such as the right curvature radius $R_1$ at the top of the dust separator screen and the left curvature radius $R_2$ at the top, h is the height difference and shape between the screen and the accelerating plate, and ${\theta}$ is the inclination angle of the screen. A total of 4 shape factors were set and the effects of Coanda and drainage performance of each element were compared and analyzed, the optimum length and size of each shape element were derived by classifying the shape elements into direct and indirect influences. Finally, it was possible to effectively filter foreign matter by narrowing the screen spacing, and the drainage performance was analyzed and optimized through numerical studies of dust separator screen.

타원형 다단계 디프드로잉 용기의 최적 예비형성 설계에 관한 연구 (A Study on the Optimum Pre-form Design for Multistage Deep Drawing of Oval Shells)

  • 김두환
    • 소성∙가공
    • /
    • 제8권4호
    • /
    • pp.356-363
    • /
    • 1999
  • This paper discusses some techniques for the determination of optimum blank size and pre-form design for multi-stepped deep drawing of oval shell. The deep drawing process of oval shape has been regarded as more difficult than that of cylindrical shell because of its complicated behavior of plastic deformation. But there is insufficient information in this area to carry out successful deep drawing work of irregular products such as oval, rectangular, and square shapes. In order to find the optimum conditions, the drawing apparatus for two kinds of pre-form design are built, a series of drawing experiments performed, and thickness stain distributions measured. From the results of thess suggested experiments, various optimum process variables are observed and discussed.

  • PDF

직접미분 설계민감도 해석을 이용한 박판금속성형 공정변수 최적화 (II) -공정 변수 최적화- (Optimum Design of the Process Parameter in Sheet Metal Forming with Design Sensitivity Analysis using the Direct Differentiation Approach (II) -Optimum Process Design-)

  • 김세호;허훈
    • 대한기계학회논문집A
    • /
    • 제26권11호
    • /
    • pp.2262-2269
    • /
    • 2002
  • Process optimization is carried out to determine process parameters which satisfy the given design requirement and constraint conditions in sheet metal forming processes. Sensitivity -based-approach is utilized for the optimum searching of process parameters in sheet metal forming precesses. The scheme incorporates an elasto-plastic finite element method with shell elements . Sensitivities of state variables are calculated from the direct differentiation of the governing equation for the finite element analysis. The algorithm developed is applied to design of the variablc blank holding force in deep drawing processes. Results show that determination of process parameters is well performed to control the major strain for preventing fracture by tearing or to decrease the amount of springback for improving the shape accuracy. Results demonstrate that design of process parameters with the present approach is applicable to real sheet metal forming processes.