• Title/Summary/Keyword: Optimum mix ratio

Search Result 132, Processing Time 0.028 seconds

Optimum Mix Proportion of Latex Modified Repair Mortar for Agricultural Concrete Structures (농업용 콘크리트 구조물을 위한 라텍스 개질 보수용 모르타르의 적정 배합비 도출)

  • Won, Jong-Pil;Lee, Jae-Young;Park, Chan-Gi;Park, Seong-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.2
    • /
    • pp.37-46
    • /
    • 2007
  • The service life of agricultural concrete structures is designed in about 30 to 100 years, but actual service lift is estimated in an average 18 years. Therefore, as the service life of the agricultural concrete structures increases, necessity of repair by aging from various environment condition exposure increases. This study was to determinate the optimum mix proportion of latex modified repair mortar and to improve the durability performance of agricultural concrete structures. The physical and mechanical tests of latex modified repair mortar were performed. Tests of flow, compressive strength, flexural strength and bond strength tests were conducted. Test results show that the optimum nex proportion of latex modified repair mortar, when used in 5% latex volume fraction (weight of cement), 1.5% antifoaming agent (weight of latex), 0.2% PVA fiber volume fraction, 1:2 (binder-sand ratio), 10% silica fume replacement ratio (weight of cement), could result in best performance for the repair of agricultural concrete structures.

Bond Strength of Mortar mixed Activated Hwangtoh

  • Go, Seong-Seok;Yeo, Sang-Ku;Lee, Hyun-Chul
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.5
    • /
    • pp.468-477
    • /
    • 2012
  • This study aimed to mix and test mortar incorporating activated Hwangtoh to improve the Hwangtoh brick bond strength of brick structures. To do this, the bond strength correlation of mortar was analyzed by means of materials and experiment factors and levels, and the optimum conditions were suggested after analyzing the physical properties of brick and the mix ratio of mortar and additive. Furthermore, the compressive strength and bond strength were found to be in inverse proportion, and in terms of the materials and mixing level, W/C ratio, substitution ratio of activated Hwangtoh, and fine aggregate grading were shown to have a considerable influence on the strength. In conclusion, the optimum mixing conditions to improve the bond strength are found to set W/C ratio at 65% and replacmenet ratio of activated Hwangtoh at 10%.

An Experimental Study on the Improvement of Durability for the Foundation Concrete under Cold Weather Condition (혹한지역 기초 콘크리트의 내구성 향상을 위한 실험 연구)

  • 우상균;송영철;김경민;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.645-650
    • /
    • 2003
  • The purpose of this study is to provide the optimum mix design of cold weather concrete to be placed at the foundation structures in substation. The basic performance tests including slump and slump flow, air content, compressive strength and freezing & thawing resistance were conducted for cold weather concrete by varying with W/C ratios such as 40%, 50% and 60% and air contents such as 3%, 4%, 5% and 6%. The effect on durability of concrete corresponding to the increasing amount of air content and W/C ratio was evaluated and the optimum mix design was recommended. From this study, the concrete mix design containing 6% of air content and 45% of W/C ratio is recommended for the foundation concrete of substation.

  • PDF

Mix Design of Polymer Grouting Mortar for Prepacked Concrete Using Polymer Dispersions (폴리머 디스퍼션을 이용한 프리팩트 콘크리트용 주입 모르타르의 배합에 관한 연구)

  • Jo, Young-Kug;Kim, Wan-Ki
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.5
    • /
    • pp.85-91
    • /
    • 2008
  • Prepacked concrete has recently been used in the special constructions fields such as underwater concrete work, heavy-weight concrete work, underground structure work, partial repair works for damaged reinforced concrete structures. and polymer-modified mortars have been employed as grouting mortars for the prepacked concrete. The purpose of this study is to recommend the optimum mix design of polymer-modified grouting mortars for prepacked concrete. Polymer-modified mortars using SBR and EVA emulsions as admixture of grouting mortars for prepacked concrete are prepared with various mix proportions such as sand-binder ratio, fly ash replacement ratio, polymer-binder ratio. and tested for flowability, viscosity of grouting mortars, bleeding ratio, expansion ratio, flexural and compressive strengths of grouting mortars and compressive and tensile strengths of prepacked concretes. From the test results, it is apparent that polymer-modified mortars can be produced as grouting mortars when proper mix design is chosen. We can design the mix proportions of high strength mortars for prepacked concrete according to the control of mix design factors such as type of polymer, polymer-binder ratio, sand-binder ratio and fly ash replacement ratio. Water-binder ratio of plain mortars for a constant flowability value are in the ranges of 43% to 50%. SBR-modified mortar has a little water-binder ratios compared to those of plain mortar, however, EVA-modified mortar needs a high water-binder ratio due to a high viscosity of polymer dispersion. The expansion and bleeding ratios of grouting mortars are also controlled in the proper value ranges. Polymer-modified grouting mortars have good flexural. compressive and tensile strengths, are not affected with various properties with increasing fly ash replacement to cement and binder-sand ratio. In this study, SBR-modified grouting mortar with a polymer-binder ratio of 10% or less, a fly ash replacement of 10% to cement and a sand-binder ratio of 1.5 is recommended as a grouting mortar for prepacked concrete.

A Study on the Mix Design and Quality Factors of the Combined High Flowing Concrete Using High Belite Cement

  • Kwon, Yeong-Ho
    • KCI Concrete Journal
    • /
    • v.14 no.3
    • /
    • pp.121-129
    • /
    • 2002
  • This study investigates experimentally into the design factors and quality variations having an effect on the properties of the combined high flowing concrete to be poured in the slurry wall of Inchon LNG in-ground receiving terminal. Especially, high belite cement and lime stone powder as cementitious materials and viscosity agent in order to improve self-compaction and hydration heat are used in this study. Water-cement ratio(W/C), fine aggregate volume ratio(Sr) and coarse aggregate volume ratio(Gv) as design factors of the combined high flowing concrete are applied to determine the optimum mix design proportion. Also quality variations for sensitivity test are selected items as followings. (1)Surface moisture(5cases) and (2)Fineness modulus of fine aggregate(5cases), (3)Concrete temperature(3cases), (4)Specific surface(3cases) and particle size of lime stone powder. As experimental results, water-cement ratio, fine and coarse aggregate volume ratio are shown as the optimum range 51%, 43% and 53% separately considering site condition of slurry wall. Also quality factors by sensitivity test should be controlled in the following ranges. (1) Surface moisture :to.67% and (2)Fineness modulus 2.6$\pm$0.2 of fine aggregate, (3)Concrete temperature l0-20t, (4) Specific surface 6,000$\textrm{cm}^2$/g and particle size 9.7$\pm$1.0${\mu}{\textrm}{m}$ of lime stone powder. Based on the results of this study, the optimum mix design proportion of the combined high flowing concrete are selected and poured successfully in the slurry wall of LNG in-ground tank.

  • PDF

The Study on the Mix Design of the Super Flowing Concrete (초유동 콘크리트의 배합설계에 관한 연구)

  • 권영호;이상수;안재현;박칠림
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.283-289
    • /
    • 1996
  • In this paper, the mix design of the super flowing concrete is described with respcet to basic concept, confined water ratio($\beta_p$), volume ratio of water-binder(w/b), volume ratio of fine aggregates($S_r$) and coarse aggregates($G_v$). The primary purposes of this study are to evaluate the effects of cementitious materials(fly ash, slag cement, portland cement), mixing factors ($\beta_p$, w/b, $S_r$, $G_v$)., and to propose the mix design method of the super flowing concrete. As results of this study, confined water ratio($\beta_p$) of cementitious materials is very high (0.99~1.1), and then the ranges of the optimum mixing factors to be satisfied with the super flowing concrete are $S_r$ 47$\ell$ 2%, $G_v$ 52$\ell$ 1%.

  • PDF

Mix Design of High Performance Concrete Using Maximum Density Theory (최대 밀도 이론을 이용한 고성능콘크리트의 배합 설계)

  • Lee, Seung-Han;Jung, Yong-Wook
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.377-383
    • /
    • 2007
  • In recent years the field application of high performance concrete has been increased to improve the quality and reliability of concrete structures. The mix design of the high performance concrete includes the 2 set-off mixture theory of mortar and coarse aggregate and that of paste and aggregate. The 2 set-off mixture theory of mortar and coarse aggregate has a problem of having to determine its value through repeated experiments in applying the rheological characteristics of mortar. The 2 set-off mixture theory of paste and aggregate has never been applied to high performance concrete since it doesn't take into account the relationship between optimum fine aggregate ratio and unit volume of powder nor does it consider the critical aggregate volume ratio. As the mixture theory of these high performance concretes, unlike that of general concrete, focuses on flowability and charge-ability, it does not consider intensity features in mix design also, the unit quantity of the materials used is determined by trial and error method in the same way as general concrete. This study is designed to reduce the frequency of trial and error by accurately calculating the optimum fine aggregate ratio, which makes it possible to minimize the aperture of aggregate in use by introducing the maximum density theory to the mix design of high performance concrete. Also, it is intended to propose a simple and reasonable mix design for high performance concrete meeting the requirements for both intensity and flowability. The mix design proposed in this study may reduce trial and error and conveniently produce high performance concrete which has self-chargeability by using more than the minimum unit volume of powder and optimum fine aggregate with minimum porosity.

A Study on the Properties of the Confined water ratio for Binder type and Replacement ratio (결합재의 종류 및 치환율에 따른 구속수비의 특성에 관한 연구)

  • Kwon Yeong-Ho;Lee Hyun-Ho;Lee Hwa-Jin;Ha Jae-Dam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.584-587
    • /
    • 2004
  • This research investigates the rheological behavior and the confined water ratio of the cement paste and binder condition in order to predict mix design proportion of the high flowing concrete. The purpose of this study is to determine the optimum replacement ratio of binders including fly ash, and lime stone powder by the cement weight. For this purpose, belite cement, blast furnace slag cement and ordinary portland cement are selected. As test results, the confined water ratio shows the following range ; OPC>blast furnace slag cement>belite cement. Therefore, belite cement is proved very excellent cementitious materials in a view point of the flowability. The optimum replacement ratio of lime stone powder is shown over $30\%$ in case of belite cement and about $10\%$ in case of slag cement type. Also, the optimum replacement ratio of fly ash is shown $30\%$ by the cement weight considering the confined water ratio and deformable coefficient of the paste condition.

  • PDF

A Fundamental Study on the Antiwashout Underwater Concrete for the Underwater Work of Ocean (수중불분리성 콘크리트의 해양공사 적용에 관한 기초적 연구)

  • 김명식;윤재범;박세인
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.25-34
    • /
    • 2000
  • When concrete is placed underwater, it is diluted with separating cementitious material and as a result the quality of concrete becomes poor. To solve this problem, antiwashout underwater concrete is increasingly used for the construction and repair of the concrete structure underwater. The objective of this study is to investigate the characteristics of antiwashout underwater concrete as to the mix proportion, casting and curing water through experimental researches. The unit weight of water and cement, water-cement ratio, fine aggregate ratio, unit weight of antiwashout underwater agent and superplasticizer, and casting and curing water were chosen to measure the suspended solids, pH, air contents, slump flow, unit weight of hardened concrete, and compressive strength. From this study, the incremental modulus at mix proportion design and unit weight of antiwashout underwater agent were increased more than fresh water, and it is a optimum mix proportion that the unit weight of water(and cement) is 230kg/$\textrm{m}^3$(460kg/$\textrm{m}^3$), waterOcement ratio is 50%, fine aggregate ratio is 40%, unit weight of antiwashout underwater agent is 1.2% of water contents per unit weight of concrete, and unit weight of supeplasticizer is 2.5% of cement contents per unit weight of concrete when the antiwashout underwater concrete is used for the underwater work of ocean.

Optimum Binder Ratio of Mass Concrete for LNG Tank (LNG저장시설 적용을 위한 매스콘크리트 최적 결합재 혼입율 검토)

  • Kim, Young-Jin;Park, Sang-Jun;Kim, Kyoung-Min;Lee, Eui-Bae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.3
    • /
    • pp.240-245
    • /
    • 2013
  • The optimum binder ratio of the low heat mass concrete for LNG tank was evaluated in the present study. Three types of binder such as OPC I, ground granulated blast-furnace slag powder were mixed and were used. Also fine particle cement and activator were used to raise an early age strength development and ground limestone was used to reduce the cost. As a result of the study, mix ratio II (30:30:40) was suitable for Bottom Center and mix ratio III(40:30:30) was suitable for Roof based on compressive strength and semi-adiabatic temperature.