• Title/Summary/Keyword: Optimum method

Search Result 6,688, Processing Time 0.04 seconds

Development of an Optimum Hull Form for a Container Ship with Minimum Wave Resistance (최소 조파저항을 가지는 컨테이너선의 선형최적화 기법에 대한 연구)

  • 최희종;서광철;김방은;전호환
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.4
    • /
    • pp.8-15
    • /
    • 2003
  • This paper presents the method for developing an optimum hull form with minimum wave resistance using SQP(sequential quadratic programming) as an optimization technique. The wave resistance is evaluated by a Rankine source panel method with non-linear free surface conditions and the ITTC 1957 friction line is used to predict the frictional resistance coefficient. The geometry of the hull surface is represented and modified using B-spline surface patches. The optimization method is applied to Series 60 hull and KCS(KRISO 3600 TEU Container Ship). The obtained results prove that the method is appropriate for preliminary hull form design.

Optimum Field Balancing of Ratating Machinery Using Genetic Algorithm (유전 알고리즘을 이용한 회전기계의 최적 현장평형잡이)

  • Choi, Won-Ho;Yang, Bo-Suk;Joo, Ho-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.6
    • /
    • pp.1819-1826
    • /
    • 1996
  • This paper present the claculating method of optimum correction mass within permissible vibration linits for ratating machinery in two-plane field balancing. Basic technique of this method is based on influence coefficient method, and grphic vector composition that the resultant of two influence vectors obtained by trial mass have to be equilibrium with initial vibration vector in the each correction plane. Genetic algorithm which is a search algorithm based on the mechanism of natural selection and natural genetics is sued for vector composition, and SUMT method is used to objective function which seeks optimum correction mass for balancing a rotor.

A Design of an Automotive Wheel Bearing Unit for Long Life (자동차 휠 베어링 유닛의 장수명 설계)

  • Yun, Gi-Chan;Choe, Dong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.319-328
    • /
    • 2000
  • This paper presents a new design method of the 1 generation wheel bearing unit using a numerical optimization technique in order to increase bearing fatigue life. For calculating the fatigue life, a method of load analysis is studied on the automotive wheel bearing system. The design variables selected are ball size, initial contact angle, number of balls, pitch diameter, pre-load, and distance between ball centers. The method of feasible directions in ADS (Automated Design Synthesis) is utilized to automatically find the optimum design variables. To validate the design method, a computer program is developed and applied to a practical passenger car model. The optimum design results demonstrated the effectiveness of the proposed design method showing that the system life of the optimally designed wheel bearing unit is enhanced in comparison with that of the initial ones within the given available design space.

Optimum Design of Glass Net in 2[MVA] Mold Transformer (2[MVA] 배전용 몰드변압기의 글라스넷 형상 최적설계)

  • Jeon, Mun-Ho;Kim, Chang-Eob
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.1
    • /
    • pp.107-112
    • /
    • 2011
  • In this paper, the optimum design of the glass net shape was studied to minimize the electric field of mold transformer. The glass net is used for reinforcement in structure between coils and epoxy, but it can cause to increase the electric field and the partial discharge. Therefore, the optimum design of glass net is required to minimize the electric field. In this paper, the objective function was approximated by using response surface method and then Zoom-in method was used for optimal design to minimize the electric field. The electric field was analysed using finite element method for each shape of glass nets.

The optimum for thrust force of slotless type Permanent Magnet Linear Synchronous Motor using neural network (신경회로망을 이용한 Slotless PMLSM의 추력 최적화)

  • Lee, Dong-Yeup;Moon, Jae-Youn;Jo, Sung-Ho;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.94-96
    • /
    • 2002
  • This paper is deal with the method of redesign for optimum thrust model using Neural-Networks in Permanent Magnet Linear Synchrous Motor(PMLSM). This method is saved time compared with design method using only Finite Element Method(FEM). In this paper data sets for training Neural-Networks obtained using 2D FEM. To confirm the validity of the data sets for training Neural-Networks optimum values of that Is compared with results of FEM. And then. this method is verified that it could be applied to the design for Slotless type PMLSM.

  • PDF

A Study on the Structural Modification of the Open Box Type Structure by Using the Stiffener (보강재를 이용한 열린 상자형 구조물의 구조변경법에 관한 연구)

  • 박석주;최창우;오창근;왕지석;정재현
    • Journal of KSNVE
    • /
    • v.6 no.1
    • /
    • pp.57-64
    • /
    • 1996
  • The objectiv of this paper is to offer the method of the optimum structural modification by fixing the stiffener on the structure. The vibrational characteristics of a open box type structure are analyzed by the sub-structure synthesis method and sensitivies of each sub-structure are calculated by sensitivity analysis method. The positions to modify are found and the quantities to change are obtained by optimization techniques. As the result, it was found that; (1) The sensitivites of the natural frequency could easily be calculated by the sensitivity analysis method and the optimum position to fix stiffeners could be found. (2) The exact size of stiffeners could be calculated by the optimum structural modification method and the natural frequency could be easily shifted to the objective value. (3) It could be confirmed that the stiffener is a effective tool for accomplishing structural modification.

  • PDF

Blank Design for Sheet Metal Product Based on Direct Design Method (직접설계법에 의한 박판부품의 초기형상설계)

  • 윤정환;김상국;정관수;연의정
    • Transactions of Materials Processing
    • /
    • v.9 no.6
    • /
    • pp.598-603
    • /
    • 2000
  • In order to improve trial-and-error based conventional practices for optimizing forming processes, a direct design method to guide iterative design practices, called the ideal forming theory, has been previously developed. In the theory, material elements are required to deform following the minimum Plastic work Path. The theory can be used to determine the ideal initial blank shape needed to best achieve a specified final shape while resulting in optimum strain distributions. In this work, the direct design method based on the ideal forming theory was applied to design initial design shape for VCR deck chassis. Based on the solution of the ideal forming theory, FEM analysis was utilized to evaluate an optimum blank shape to be formed without tearing. Simulation results are in good agreement with experimental data. It was shown that the proposed sequential design procedure based on direct design method and FEM can be successfully applied to optimize the die design Procedure of sheet metal forming processes.

  • PDF

Optimal Design of Hydraulic System Using the Complex Method (컴플렉스법에 의한 유압시스템의 최적 설계)

  • Lee S.R.;Lee Y.B.;Park J.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.1 no.4
    • /
    • pp.1-8
    • /
    • 2004
  • The optimum design parameters of several hydraulic systems are obtained using the complex method that is one kind of constrained direct search method. First, the parameters of lead-lag controller of the direct drive servovalve is designed using the complex method to satisfy the steady-state error requirement. Second, the optimum locating point of hydraulic cylinder Is determined to minimize the cylinder force in the operation range of rotational sluice gate. For the third application case, the optimum piston area of hydraulic cylinder is determined to minimize the man power to elevate the manually operated sluice gate.

  • PDF

Optimum Balancing of Rotating Machinery Using Genetic Algorithm (유전 알고리즘을 이용한 회전기계의 최적 평형잡이)

  • 주호진;최원호;양보석
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1995.10b
    • /
    • pp.195-202
    • /
    • 1995
  • This paper presents the calculating method of optimum correction mass within permissible vibration limits for rotating machinery in two-plane field balancing. Basic technique of this method based on influence coefficient method, is graphic vector composition that the resultant of two influence vectors obtained by trial mass have to be equilibrium with initial vibration vector in the each correction plane. Genetic algorithm which is a search algorithm based on the mechanics of natural selection and natural genetics is used for vector composition, and SUMT method is used to objective function which seeks optimum correction mass for balancing a rotor.

  • PDF

Development of an analytical method for optimum design of reinforced concrete beams considering both flexural and shear effects

  • Zivari, Ahmad;Habibi, Alireza;Khaledy, Nima
    • Computers and Concrete
    • /
    • v.24 no.2
    • /
    • pp.117-123
    • /
    • 2019
  • Optimization is an important subject which is widely used in engineering problems. In this paper, an analytical method is developed for optimum design of reinforced concrete beams considering both flexural and shear effects. A closed-form formulation is derived for optimal height and rebar of beams. The total material cost of steel and concrete is considered as the objective function which is minimized during the optimization process. The ultimate flexural and shear capacities of the beam are considered as the main constraints. The ultimate limit state is considered for deriving the relations for flexural capacity of the beam. The design requirements are considered according to the item 9 of the Iranian National Building. Analytical formulas and some curves are proposed to be used for optimum design of RC beams. The proposed method can be used to perform the optimization of RC beams without the need of any prior knowledge in optimization. Also, the results of the studied numerical example show that the proposed method results in a better design comparing with the other methods.