• Title/Summary/Keyword: Optimum media size

Search Result 64, Processing Time 0.026 seconds

Development of Raising Seedling Technology for Veronica pyrethrina Nakai Using Plug Trays

  • Kwon, Hyuck-Hwan;Oh, Hye-Jin;Kim, Jin-Ho;Kim, Sang-Yong
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.5
    • /
    • pp.499-507
    • /
    • 2021
  • Background and objective: This study was carried out to develop an effective technique for raising seedlings of Veronica pyrethrina Nakai, a native plant species in the Korean Peninsula, in plug trays. Methods: To investigate the optimum plug cell size and sowing media, we sowed seed in to plug trays with 34, 21, and 10 mL cells and filled with a commercial horticultural substrate and mixtures of peatmoss and perlite in 1:1, 3:1, and 4:1 ratios. Fertilization levels were set at 0, 500, 1000 and 2000 mg·L-1. Results: Plug cell size did not significantly influence the seedling growth of V. pyrethrina. By substrate type, the growth rate was highest in the horticultural substrate, followed by 4:1, 3:1, and 1:1. Growth by fertilization level was higher in all fertilized treatment groups than in the control group, and there was no difference among 500, 1000, and 2000 mg·L-1. Conclusion: The results of this study proved that it is most suitable for raising seedlings of V. pyrethrina to sow the seeds in a 10 mL cell plug tray filled with horticultural substrates, and apply fertilizers with less than 500 mg·L-1 concentration.

Improvement of Magnetic Properties of Nd-Fe-B Type Sintered Magnet (Nd-Fe-B계 소결자석의 자기적특성 향상 연구)

  • Kim, Yoon-B.;Jung, W.S.;Jeung, W.Y.
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.2
    • /
    • pp.57-63
    • /
    • 2002
  • In order to increase the magnetic properties of a Nd-Fe-B sintered magnet, the general factors including particle size and its distribution, volume fraction of Nd$_2$Fe$_{14}$B phase, degree of alignment of Nd$_2$Fe$_{14}$B grain, oxygen content and grain size etc. should be optimized by controlling the composition of Nd-Fe-B alloy as well as the manufacturing process. In this study, fabrication of the Nd-Fe-B sintered magnet was carried out in a laboratory scale by controlling the composition of Nd-Fe-B alloy and the manufacturing process. The optimum milling condition was found by investigating the milling media, milling time and ball size. The addition of FeGa was effective to increase the coercivity of the Nd-Fe-B sintered magnet. A remanence of 14.4 kG, a coercivity of 9.4 kOe and a maximum energy product of 47 MGOe were obtained from the sintered magnet.

Development of Porous Media for Sewage Treatment by Pyrolysis Process of Food Wastes with Loess (음식물 쓰레기 및 황토 혼합물의 열분해를 통한 수질정화용 다공성 담체 개발)

  • Kim, Sang-Bum;Lee, Myong-Hwa;Kim, Yong-Jin;Park, Chul-Hwan;Lee, Jong-Rae;Kim, Gyung-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.3
    • /
    • pp.289-296
    • /
    • 2007
  • Porous media for sewage treatment were developed through a pyrolysis process of food wastes with loess in the study. This work was carried out in two consecutive stages; in the first stage, new porous media were prepared through a high temperature pyrolysis process, and then the resultant media were applied to a simple lab-scale sewage treatment process in the second stage. To determine the optimum operating conditions of pyrolysis and mixing ratio of materials, physical properties such as specific surface area, porosity and compressive strength of final products were analyzed. The removal efficiencies of TOC and COD were measured to evaluate the effectiveness of resultant porous media. As a result of the experiment, we found that the best mixing ratio of food wastes to loess was 1 : 1 at $1,100^{\circ}C$. Average porosity of the developed media was 37.0%, in which pore size ranged from 1 to $20{\mu}m$, showing quite vigorous microbial activation. After immersing the media into a reactor for sewage treatment for eight days, removal efficiencies of TOC and COD were 87.3% and 85.0%, respectively.

Effect of Processing Parameters and Powder Size on Microstructures and Mechanical Properties of Y2O3 Coatings Fabricated by Suspension Plasma Spray

  • Kim, Sun-Joo;Lee, Jung-Ki;Oh, Yoon-Suk;Kim, Seongwon;Lee, Sung-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.395-402
    • /
    • 2015
  • The suspension plasma spray (SPS) technique has been used to obtain dense $Y_2O_3$ coatings and to overcome the drawbacks of the conventional air plasma spray (APS). SPS uses suspensions containing micrometer or sub-micrometer sized powders dispersed in liquid media. In this study, microstructure developments and mechanical properties have been investigated as functions of particle size of source material and plasma processing parameters such as plasma power and stand-off distance. The microstructure of the coating was found to be highly related to the particle size and the plasma processing parameters, and it was directly reflected in the hardness and the adhesion strength. When fine powder (BET $16.4m^2/g$) was used as a raw material in the suspension, there was, with increasing stand-off distance, a change from a dense structure with a slightly bumpy surface to a porous structure with a cauliflower-like surface. On the other hand, when a coarse powder (BET $2.8m^2/g$) was used, the coating density was lower, with microscopic splats on the surface. Using fine $Y_2O_3$ powders, the coating layer with an optimum short stand-off distance showed a high hardness of approximately 90% of that of sintered $Y_2O_3$ and an adhesion strength several times higher than that of the coating by conventional APS.

High frequency plant regeneration from mature embryos of an elite barley cultivar (Hordeum vulgare L. cv Baegdong)

  • Lee, Kui-Jae;Wtpsk, Senarath;Lee, Wang-Hyu
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2003.10b
    • /
    • pp.21-21
    • /
    • 2003
  • An efficient plant regeneration system was developed for Hordeum vulgare L. cv Baegdong - an important Korean cultivar. The protocol was based on a series of experiments involving the sizes of mature embryos and the culture media. The embryo size is found to be critical for the establishment of embryogenic callus. Embryos of 1.1-1.5 mm size showed a much higher ability to produce embryogenic callus capable of regenerating green plants. The auxins picloram and dicamba proved effective in inducing callus from mature embryos. 2.5 mg $I^{-1}$ dicamba and 4.0 mg $I^{-1}$ picloram in Murashige and Skoog's (MS) medium was optimum for the induction of primary callus. The induced primary callus was loose and friable which ultimately developed into creamy white and compact callus after transferring into the fresh medium. Multiple shoots were induced in the MS medium supplemented with 6.0 g $I^{-1}$ maltose, 20 mg $I^{-1}$ sorbitol, 0.5 mg $I^{-1}$ 2,4-D and 1.0 mg $I^{-1}$ kinetin and the rate was 6.5 shoots per embryo. Regenerated plants were hardy and developed roots rapidly in the medium containing 0.2 $I^{-1}$ IBA. This efficient plant regeneration system provides a foundation for generating transgenic plants of this important barley cultivar.

  • PDF

High frequency plant regeneration from mature embryos of an elite barley cultivar (Hordeum vulgare L. cv Baegdong)

  • Lee, Kui-Jae;Wtpsk, Senarath;Lee, Wang-Hyu
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2003.10a
    • /
    • pp.59-67
    • /
    • 2003
  • An efficient plant regeneration system was developed for Hordeum vulgare L. cv Baegdong - an important Korean cultivar. The protocol was based on a series of experiments involving the sizes of mature embryos and the culture media. The embryo size is found to be critical for the establishment of embryogenic callus. Embryos of 1.1-1.5 mm size showed a much higher ability to produce embryogenic callus capable of regenerating green plants. The auxins picloram and dicamba proved effective in inducing callus from mature embryos. $2.5\;m;I^{-1}$ dicamba and $4.0\;mg\;I^{-1}$ picloram in Murashige and Skoog's (MS) medium was optimum for the induction of primary callus. The induced primary callus was loose and friable which ultimately developed into creamy white and compact callus after transferring into the fresh medium. Multiple shoots were induced in the MS medium supplemented with $6.0\;g\;I^{-1}$ maltose, $20\;mg\;I^{-1}$ sorbitol, $0.5\;mg\;I^{-1}$ 2, 4-D and $1.0\;mg\;I^{-1}$ kinetin and the rate was 6.5 shoots per embryo. Regenerated plants were hardy and developed roots rapidly in the medium containing $0.2\;I^{-1}$ IBA. This efficient plant regeneration system provides a foundation for generating transgenic plants of this important barley cultivar.

  • PDF

Particle Morphology via Change of Ground Particle for Various Experimental Conditions During a Grinding Process by Three Kinds of Media Mills (세 가지 매체형 분쇄기를 이용한 분쇄공정에서 다양한 실험 조건에 대한 입자형상변화)

  • Sakuragi, Shiori;Bor, Amgalan;Lee, Jehyun;Choi, Heekyu
    • Particle and aerosol research
    • /
    • v.11 no.1
    • /
    • pp.9-19
    • /
    • 2015
  • This study investigated the effects of ball mill operation condition on the morphology of raw powders in the dry-type milling process using three types of ball mills traditional ball mill, stirred ball mill and planetary ball mill. Furthermore, since spherical powders offer the best combination of high hardness and high density, the optimum milling condition to produce sphere-shaped powders was studied. The applied rotation speed ranged from 200rpm (low rotation speed) to 700rpm (high rotation speed). The used ball size ranged from 1mm to 5mm. The metal powder morphology was studied using SEM, XRD and PSA. The aimed spherical powders could be obtained under the optimum experimental conditions: traditional ball mill(200rpm, 1mm ball), planetary ball mill (500rpm, 1mm ball) and also planetary ball mill (700rpm, 1 and 3 mm ball). The results show to the development of new material using spherical type copper powder/CNT composites for air-craft and automotive applications.

Incubational Characteristics of Bacillus polymyxa 'HB26-5' Antagonistic to Ginger Rhizome Rot and Its Formulation (생강 근경썩음병 길항균 Bacillus polymyxa 'HB26-5' 균주의 배양적 특성 및 제형화)

  • 이두구;심재성;심형권;이용훈;박홍규
    • Korean Journal of Plant Resources
    • /
    • v.12 no.4
    • /
    • pp.289-296
    • /
    • 1999
  • The availability of Bacillus polimyxa 'HB 26-5' as a biological control agent was investigated. The antagonistic bacteria Bacillus polymyxa 'HB 26-5' grew well on the media at pH 7.0 and the optimum growth temperature was $25^{\circ}C$. The pH of the media changed to weak acid(pH 6.1~6.5) at the beginning of incubation, but to weak alkali(pH 7.8~8.2) at 7days after incubation. The best carrier to enhance colonization of the bacteria were the mixture of rice bran and peat, or rice bran and kaoline, in those formulation the density of the bacteria was changed slightly, though the density was beginning to decrease 3 weeks after application at field. In view of the physical characteristics of the formulation for the density maintenance during storage such as the hardness and the size, the best one was the formulation consisted of sodium alginate 2%, kaolin 15% and rice bran 3%.

  • PDF

The identification of optimum condition for direct regeneration in black raspberry

  • Ran, Choi-Heh;Park, Pill-Jae;Lee, Hee-Kwon;Joong, Yun-Song;Lee, In-Sok
    • Journal of Plant Biotechnology
    • /
    • v.35 no.2
    • /
    • pp.163-167
    • /
    • 2008
  • Adventitious buds appeared within 2 weeks on the base of the petiole explants and increased for two months. A maximum of regeneration (15.6%) was obtained on the medium containing $1.5\;{\mu}M$ TDZ in combination with $1\;{\mu}M$ IBA. To know which explants are the best for the induction of regeneration, three explants such as leaf, petiole and leaf-petiole were used. Among the explant types, the leaf-petiole explant was significantly more effective than leaf and petiole for promoting adventitious shoots, with leaf-petiole inducing at the highest regeneration frequency (33.7%). The regeneration frequency of adventitious shoots in the leaf-petiole explants was significantly affected by leaf size and the position of explants. The leaf-petiole smaller than 5 mm leaf in width was induced at the highest regeneration frequency (68.9%). The smaller leaf sizes, the greater regeneration frequency. Also when the leaves are nearer to the shoot tip, the regeneration frequency is higher. When the rooted micro-shoots were transferred to the soil after growing for 6 weeks in the media, the survival rate was 90%.

Effective Total Nitrogen (TN) Removal in Partially Aerated Biological Aerated Filter (BAF) with Dual Size Sand Media (다중 모래 여재를 적용한 부분 포기 Biological Aerated Filter의 효과적인 Total Nitrogen (TN) 제거)

  • Kang, Jeong-Hee;Song, Ji-Hyeon;Ha, Jeong-Hyub
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.1
    • /
    • pp.5-14
    • /
    • 2010
  • A pilot-scale biological aerated filter (BAF) was operated with an anaerobic, anoxic and oxic zone at $23{\pm}1^{\circ}C$. The influent sCOD and total nitrogen concentrations in the feedwater were approximately 250 mg/L and 35 mg N/L, respectively. sCOD removal at optimum hydraulic retention time (HRT) of 3 hours with recirculation rates of 100, 200 and 300% in the column was more than 96%. Total nitrogen removal was consistently above 80% for 4 and 6 hours HRT at 300% recirculation. For 3 hours HRT and 300% recirculation, total nitrogen removal was approximately 79%. Based on fitting results, the kinetic parameter values on nitrification and denitrification show that as recirculation rates increased, the rate of ammonia and nitrate transformation increased. The ammonium loading rates for maximum ammonium removed were 0.15 and 0.19 kg $NH_3$-N/$m^3$-day for 100% and 200% recirculation, respectively. The experimental results demonstrated that the BAF can be operated at an HRT of 3 hours with 200 - 300% recirculation rates with more than 96 % removal of sCOD and ammonium, and at least 75% removal of total nitrogen.