• Title/Summary/Keyword: Optimum formulation

Search Result 306, Processing Time 0.024 seconds

Optimum Design of Prestressed Concrete Girder Railway Bridge (프리스트레스트 콘크리트 거더 철도교의 최적설계)

  • Lee Jong-Min;Seo Dong-Joo;Lee Tae-Gyun;Lee Joung-Sun;Cho Sun-Kyu
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.3
    • /
    • pp.267-275
    • /
    • 2005
  • Prestressed concrete girder(PSC girder) bridges have been used widely at the railway as well as highway because they are great in the functional and economical efficiency. Also they have the advantage of convenience of design and construction. However it could be easily verified that the section of PSC girder is excessive design, which has much redundancy against design loads. Thus, in this paper the formulation of the optimum design for PSC girder railway bridge is suggested and dominant design variables and constraints are inquired as performing the optimum design. In order to effective optimum design, design variables are formulated as PSC girder sectional dimension and girder space. The objective is adopted as total cost of PSC girder railway bridge. Also, constraints are formulated according to Korean railway design specification and considering construction-ability such as PS anchorage and girder space. Using the proposed optimum design system, optimum PSC girder railway bridge design has been performed. And from the results of analysis it is suggested to denote the optimum section which satisfies the structural safety and economical efficiency all together.

Development of Load Factors Based on Optimum Reliability Analysis Model (하중 계수에 기초한 최적신뢰성해석 모델 개발)

  • 이증빈;신형우
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.04a
    • /
    • pp.134-139
    • /
    • 1992
  • This study introduces simple derivation of optimum load factors based on both cornell's MFOSM (Mean First Order End Moment) methods and Lind - Hasofers AFOSM (Advanced First Order 2nd Moment) methods and demonstrates the relationship between the optimum reliability, the load factors, the probability distributions selected to model the load, and a measure of relative failure cost. Although some of the cost parameters cannot be evaluated accurately and the upper tail characteristics of the distributions of the random loads remain uncertainty, this optimum reliability formulation provides insight on which Parameters are most significant in selecting appropriate load criteria for structure design.

  • PDF

Optimum cost design of RC columns using artificial bee colony algorithm

  • Ozturk, Hasan Tahsin;Durmus, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.45 no.5
    • /
    • pp.643-654
    • /
    • 2013
  • Optimum cost design of columns subjected to axial force and uniaxial bending moment is presented in this paper. In the formulation of the optimum design problem, the height and width of the column, diameter and number of reinforcement bars are treated as design variables. The design constraints are implemented according to ACI 318-08 and studies in the literature. The objective function is taken as the cost of unit length of the column consisting the cost of concrete, steel, and shuttering. The solution of the design problem is obtained using the artificial bee colony algorithm which is one of the recent additions to metaheuristic techniques. The Artificial Bee Colony Algorithm is imitated the foraging behaviors of bee swarms. In application of this algorithm to the constraint problem, Deb's constraint handling method is used. Obtained results showed that the optimum value of numerical example is nearly same with the existing values in the literature.

Optimum multi-objective modified step-stress accelerated life test plan for the Burr type-XII distribution

  • Srivastava, P.W.;Mittal, N.
    • International Journal of Reliability and Applications
    • /
    • v.15 no.1
    • /
    • pp.23-50
    • /
    • 2014
  • This paper deals with formulation of optimum multi-objective modified step-stress accelerated life test (ALT) plan for Burr type-XII distribution under type-I censoring. Since it is impractical to estimate only one objective parameter after conducting costly ALT tests; also, it is not desirable to assume instantaneous changes in stress levels because of limited capacity of test equipments and the presence of undesirable failure modes, therefore, an optimum multi-objective modified step-stress ALT plan has been designed. The optimal test plan consists in determining the optimum low stress level and optimal time at which stress starts linearly increasing from low stress by minimizing the weighted sum of the asymptotic variances of the maximum likelihood estimator of quantile lifetimes at design constant stress. The method developed has been illustrated using an example. Sensitivity analysis has been carried out. Comparative study has also been done to highlight the merits of the proposed model.

  • PDF

Optimum design of a reinforced concrete beam using artificial bee colony algorithm

  • Ozturk, H.T.;Durmus, Ay.;Durmus, Ah.
    • Computers and Concrete
    • /
    • v.10 no.3
    • /
    • pp.295-306
    • /
    • 2012
  • Optimum cost design of a simply supported reinforced concrete beam is presented in this paper. In the formulation of the optimum design problem, the height and width of the beam, and reinforcement steel area are treated as design variables. The design constraints are implemented according to ACI 318-08 and studies in the literature. The objective function is taken as the cost of unit length of the beam consisting the cost of concrete, steel and shuttering. The solution of the design problem is obtained using the artificial bee colony algorithm which is one of the recent additions to metaheuristic techniques. The artificial bee colony algorithm is imitated the foraging behaviors of bee swarms. In application of this algorithm to the constraint problem, Deb's constraint handling method is used. Obtained results showed that the optimum value of numerical example is nearly same with the existing values in the literature.

Optimum Design of Prestressed Concrete Girder Railway Bridge (프리스트레스트 콘크리트 거더 철도교의 최적설계)

  • Cho, Sun-Kyu;Youn, Seok-Goo;Seo, Dong-Joo;Jung, Jae-Dong;Kim, Hyun-Woo
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1125-1130
    • /
    • 2004
  • The prestressed concrete girder bridges have been used widely at the domestic national road as well as highway because it is great in the functional and economical efficiency. Also it has the advantage of convenience of design and construction due to being given standard sections. However it could be easily verified that a standard section of P.S.C girder is excessive design, which has much more redundancy than is necessary against design loads. Thus, in this paper the formulation of the optimum design for PSC girder railway bridge is suggested and dominant design variables and constraints are inquired as performing the optimum design. The objective is adopted as total cost of PSC girder bridge ,and in order to effective optimum design, design variables are formulated as PSC girder section dimension and girder space as well. And constraints are formulated according to Korean railway design specification and considering construction-ability such as PS anchorage and girder space. Using the proposed optimum design system, optimum PSC girder bridge design has been performed. And from the results of analysis it is suggested to denote the optimum section which satisfies the structural safety ,and economical efficiency all together.

  • PDF

Quality Characteristics of Sulgidduk Made with Different Amounts of Waxy Millet Flour (차조가루 첨가량을 달리한 설기떡의 품질특성)

  • Chae, Kyung-Yeon;Kwon, Tae-Young;Hong, Jin-Sook
    • Korean journal of food and cookery science
    • /
    • v.25 no.2
    • /
    • pp.127-133
    • /
    • 2009
  • The aim of this study was to determine the optimum amount of waxy millet flour (WMF) to add to rice flour in the preparation of Sulgidduk (waxy millet rice cakes). According to the results, increasing the level of WMF in the formulation caused the moisture contents of samples to increase ($37.14{\sim}38.81%$). The L-value decreased with increasing additions of WMF whereas the b-value increased and the a-value did not differ by the addition of the flour. According to the mechanical evaluation results, hardness increased with increasing amounts of added WMF. Adhesiveness, cohesiveness, gumminess, and brittleness did not differ significantly and springiness was highest at the 30% level of WMF. From the sensory evaluation results, the 30% WMF samples received the highest overall-acceptability scores. In conclusion, according to its sensory and mechanical qualities, the optimal Sulgidduk formulation consisted of 30% WMF added to rice flour.

Formulation of Surimi and Surimi-based Products with Acceptable Gelling Ability from Squid Muscle (가열 젤 형성능을 가진 오징어 Surimi와 Surimi-based 제품을 위한 첨가물의 최적화)

  • Kim, Byeong-Gyun;Choi, Yeung-Joon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.1
    • /
    • pp.37-44
    • /
    • 2011
  • We investigated the optimum formulation to improve the gelling ability of squid, Dosidicus gigas, surimi. The solubility of minced squid muscle was highest at pH 10.7, and lowest at pH 5.0. The yields of conventional surimi and protein recovery after alkaline pH-shift processing were $68.1{\pm}2.4%$ and $65.3{\pm}2.6%$, respectively, whereas the protein recovery with acidic pH-shift processing was only $21.2{\pm}1.6%$. The addition of 5% starch decreased the breaking force regardless of the kind of starch, while the mixture of corn, potato, and wheat starch (total 15%) increased the breaking force by up to 1.9 fold. The addition of 5% egg white, 5% porcine plasma protein, 0.3% $CaCl_2$, and 0.3% Polymix GA significantly increased the breakingforce (P<0.05). None of the ingredients examined in this study significantly affected the deformation value (P<0.05). The optimum concentrations of egg white and $CaCl_2$ to obtain a breaking force of 55 g and a whiteness of 70 were 2.69% and 0.22%, respectively.

Design analysis of the optimum configuration of self-anchored cable-stayed suspension bridges

  • Lonetti, Paolo;Pascuzzo, Arturo
    • Structural Engineering and Mechanics
    • /
    • v.51 no.5
    • /
    • pp.847-866
    • /
    • 2014
  • This paper describes a formulation to predict optimum post-tensioning forces and cable dimensioning for self-anchored cable-stayed suspension bridges. The analysis is developed with respect to both dead and live load configurations, taking into account design constrains concerning serviceability and ultimate limit states. In particular, under dead loads, the analysis is developed with the purpose to calculate the post-tensioning cable forces to achieve minimum deflections for both girder and pylons. Moreover, under live loads, for each cable elements, the lowest required cross-section area is determined, which verifies prescriptions, under ultimate or serviceability limit states, on maximum allowable stresses and bridge deflections. The final configuration is obtained by means of an iterative procedure, which leads to a progressive definition of the stay, hanger and main cable characteristics, concerning both post-tensioning cable stresses and cross-sections. The design procedure is developed in the framework of a FE modeling, by using a refined formulation of the bridge components, taking into account of geometric nonlinearities involved in the bridge components. The results demonstrate that the proposed method can be easily utilized to predict the cable dimensioning also in the framework of long span bridge structures, in which typically more complexities are expected in view of the large number of variables involved in the design analysis.

Studies on Application of Soybean Fatty Acid for Development of Cosmetic Formulation (대두 지방산을 활용한 화장품 기초제 개발)

  • Lee, Chi-Ho;Shin, Young-Hee;Lee, Une-Hyang
    • Journal of Pharmaceutical Investigation
    • /
    • v.20 no.2
    • /
    • pp.55-64
    • /
    • 1990
  • Soybean fatty acid, the largest byproduct in the production of soybean oil, was formulated for hand cream, oil in water emulsion base, to improve the suppleness and elasticity of skin. The stability of emulsion observed by a macroscopic method was used as a characteristic index for deciding an optimum formula of hand creams. The optimum formula of the most stable hand cream was obtained from polynomial regression equation, contour graphs and partial derivative graphs. The values of soybean fatty acid and stearyl alcohol in the obtained optimum formula were 9.75 and 14.75 w/w%, respectively, and sodium lauryl sulfate was not needed. Experimental value for the stability of hand cream prepared according to the optimum formula was 76,14 days, and the prediction value by computation method was 73.25 days. From the results of accelerated tests by elevated temperature, the stability of hand cream by optimum formula was 1.7 year at room temperature $(25^{\circ}C)$. The hand cream containing soybean fatty acid was found to be free of primary irritant substance to the skin by Draize technique.

  • PDF