• Title/Summary/Keyword: Optimum dosage

Search Result 274, Processing Time 0.029 seconds

Characteristics of Apparent Molecular Weight Distribution and Removal of DOC by Coagulation and Sedimentation Process with Polyaluminum Chloride in Nakdong River Water (응집·침전 공정에서 PAC를 이용한 낙동강 원수의 DOC 제거 및 분자량 분포 특성)

  • Kim, Yeong-Tak;Kim, Eun-Hee;Rhim, Jung-A;Yoon, Jeong-Hyo;Kim, Dong-Youn
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.1
    • /
    • pp.125-133
    • /
    • 1999
  • The objective of present work is to evaluate the optimum coagulation conditions in order to decrease dissolved organic carbon(DOC) and turbidity at different polyaluminum chloride dosage and pH from Nakdong River water. This studies were carried out to examine distribution on apparent molecular weight(AMW) of DOC in the Nakdong River water and its coagulation-sedimentation water. On the basis of jar tests, at the optimum coagulation pH in order to decrease DOC and turbidity were pH 5.0~6.0 and optimum dosage of polyaluminum chloride were 10~15mg $Al_2O_3/L$. The removal percentage of DOC and UV-254 absorbance were 35~40%, 45~60%, respectively. In pilot plant, at the optimum coagulation pH in order to decrease DOC and turbidity were 5.0-6.5, and the removal percentage of DOC were 30~45%. Distributions of AMW in the Nakdong River, less than 6,800dalton were 60.7% 6,800~11,000dalton were 32.8%, more than 11,000dalton were 6.4%. When the polyaluminum chloride dosage was 12~20mg/L, the removal percentages of each AMW for AMW of Nakdong River water, less than 6,800dalton were 25~28%, 6,800~11,000dalton were 65~68% more than 11,000dalton were 10~60%.

  • PDF

Characterization of Humic Acid in the Chemical Oxidation Technology(I) - Characteristics by Photocatalytic Oxidation Process - (화학적 산화법에 의한 부식산의 분해 처리기술에 관한 연구(I) - 광산화공정을 통한 부식산의 분해특성 분석 -)

  • Kim, Jong Boo;Rhee, Dong Seok
    • Analytical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.234-240
    • /
    • 2000
  • The efficiency of Photocatalytic Oxidation Process were investigated for the treatment of Aquatic Humic Substances (AHS). In UV-only system, pH 7-9 was the optimum pH range for TOC removal, and alkali range was the optimum pH for absorbance decrease. In UV/$TiO_2$ system, the optimum $TiO_2$ dosage was 50ppm and over 50ppm of $TiO_2$ dosage was not effective for removal of AHS. In UV/$H_2O_2$ system, optimum $H_2O_2$ dosage was 20mM, when over 20mM dosage, removal of TOC (Total Organic Carbon) and absorbance was decreased. Radical scavenger affected on the photo-oxidation of AHS. Removal rate of TOC and absorbance was decreased by addition of carbonate ions and TOC removal was more effected than that of absorbance.

  • PDF

Sewage Sludge Thickening Using Electroflotation (전기부상을 이용한 하수슬러지 농축)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.16 no.9
    • /
    • pp.1085-1090
    • /
    • 2007
  • The performance of EF (electroflotation) on the thickening of activated sludge were investigated using laboratory scale batch flotation reactor. In this paper, the effects of parameters such as electrode material, NaCl dosage, initial sludge concentration and electrode distance were examined. The results showed that the performance for sludge thickening of the five electrodes lay in: Pt/Ti > Ru/Ti > Ir/Ti > Ti mesh > Ti plate. The more NaCl dosage was high, the more sludge was thickened and the shorter thickening time was obtained. However, considering the final thickening time and sludge concentration, optimum NaCl dosage was 0.5 g/L. Thickening time and sludge concentration was not affected by electrode distance. In DAF (dissolved air flotation) system, optimum recycle ratio was 40% and thickening performance was lower than that of the EF.

Determination of Optimum Dosage of Polymer by Zeta potential in the Wastewater Treatment (수처리 시 Zeta전위 측정에 의한 응집제 주입량 결정)

  • Cho, Jun-Hyung;Kang, Mee-Ran
    • Journal of Forest and Environmental Science
    • /
    • v.22 no.1
    • /
    • pp.27-31
    • /
    • 2006
  • Sedimentation characteristics such as SS, COD removal efficiency of wastewater in the toilet paper mill using recycled paper were examined by zeta potential. Optimum dosage of coagulant were determined by turbidity, SS, COD and then equation for treatment efficiency was suggested. Mechanical strength of floc was determined by turbidity.

  • PDF

Treatment Efficiency of Complex Wastewater by Fenton's Oxidation Condition (펜톤산화에 따른 복합폐수의 처리효율연구)

  • Sung, Il-Wha
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.5 s.92
    • /
    • pp.446-450
    • /
    • 2006
  • In order to treat the wastewater containing organic compound, pre-treatment system connected with MSP(molecular separation process) was investigated. With the aim of selecting an optimum process of Fenton's oxidation, removal efficiency of each process in the optimum reaction condition was recommended. The $Fe/H_{2}O_{2}$(ferric sulfate to hydrogen peroxide)reagent is referred to as the Fenton's regent, which produces hydroxyl radicals by the interaction of Fe with $H_{2}O_{2}$. The powerful oxidizing ability and extreme kinetic reactively of the hydroxyl radical was well established. Increasing dosage of $Fe/H_{2}O_{2}$ increased removal efficiency as molar ratio of $Fe/H_{2}O_{2}$ between 0.2 and 2.5. Optimum dosage of molar ratio was 1. The removal efficiency for reaction condition was increased as pH decreased when the molar ratio of $Fe/H_{2}O_{2}$ was 1.7. Fenton's oxidation was most efficient in the reaction time 35 min for complex wastewater. Also, coagulation aid experiments using kaolin resulted in 3% of kaolin dosage.

Flocculation Characteristics of Kaoline Suspensions in Water by Cationic Polyelectrolytes

  • Kam, Sang-Kyu;Kim, Dae-kyoung;Ko, Byung-Churl;Moon, Chang-Seong;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.11 no.2
    • /
    • pp.93-102
    • /
    • 2002
  • Using a simple continuous optical technique, coupled with measurements of zeta potential, the flocculation characteristics of kaoline suspensions of different content(15, 35 and 55 NTU) by several cationic polyelectrolytes, has been examined. The optimum mixing is obtained under a constant stirring of 200 rpm, differently from a general flocculation test. The charge density of a polyelectrolyte is important in determining the optimum dosage and in the removal of kaoline particles. The optimum dosage is less for the polyelectrolyte of higher charge density and is the same regardless of kaoline content. At the dosage, the removal of kaoline particles is higher for the polyelectrolyte of higher charge density and zeta potential of kaoline particles reaches to near zero. The rate of adsorption and flocculation rate have been found to be affected by charge density and molecular weight of a polyelelctrolyte and the content of kaoline particles.

Determination of Optimun Coagulant Dosage for Effective Water Treatment of Chinyang Lake -The Effect of Coagulant Dosing on Remoaval of Colloidal Pollutants- (진양호소수의 효과적인 정수처리를 위한 최적응집제 주입량 결정 -콜로이드성 오염물질 처리를 위한 응집제 주입효과-)

  • 이원규;조주식;이홍재;허종수
    • Journal of Environmental Science International
    • /
    • v.7 no.6
    • /
    • pp.761-772
    • /
    • 1998
  • This study was performed to determine the optimum coagulant dosing amount for effective treatment of raw water. The removal rate of turbidity and the variations of water qualities according to various dosage of coagulants such as Alum, PAC and PACS were investigated. The optimum coagulant dosing amount to make the lowest turbidity of water were 35mg/ι t of Alum, 30mg/ι of PAC and 10mg/ι of PACS in case of 5 NTU of raw water turbidity, and 30mg/ι of Alum, 25mg/ι of PAC and 10mg/ι of PACS in case of 10 NTU of that, respectively. The removal rates of turbidity at 4 min. and 8 min. of settling time were 10 and 72% of Alum, 44 and 62% of PAC and 25 and 55% of PACS in case of 5 NTU, and 52 and 70% of Alum, 90 and 95% of PAC and 10 and 28% of PACS in case of 10 NTU, respectively. Judging from the settling capability of floc., the reaction time of floe. formation and removal efficiency of turbidity, PAC was evaluated as more effective coagulant than Alum and PACS. Also PAC was regarded as the most effective coagulant when the water supply was changed sharply and the fluctuation of the surface loading occured with wide and sharp in settling basin. pH and alkalinity of the water were decreased with increasing coagulants dosage. But pH and alkalinity were not decreased below 5.8 which is the standard for drinking water quality, and 10mg/ι which is the limit concentration of floc. breakage, respectively. Residual Al of the treated water was decreased with increasing coagulants dosage in case of 5 and 10NTU of raw water turbidity. $KMnO_4$ consumption of the water was decreased with increasing coagulants dosage. The reduction rate of $KMnO_4$ consumption at the optimum coagulants dosage were 39% of Alum. 18% of PAC and 11% of PACS in case of 5 NTU of raw water turbidity, and 42% of Alum, 27% of PAC and 36% of PACS in case of 10 NTU of that, respectively. Any relationship was not found between the removal rate of turbidity and KMnO$_4$ consumption. TOC of the water was a bit decreased with increasing coagulants dosage up to 30mg/ι but not changed above 30mg/ι of coagulants dosage. The degree of TOC reduction was increased in the order of Alum, PAC and PACS treatment. Zeta potential of the colloidal floe. at the optimum coagulants dosage was in the range of -20~-15mV in case of 5 NTU of raw water turbidity and 0~0.5mV in case of 10 NTU of that. respectively. Although the kinds and dosages of coagulants were different, zeta potential range were fixed under the conditions of the best coagulation efficiency.

  • PDF

Fluoride Removal Using Ready-Mixed Concrete Sludge (레미콘 슬러지를 이용한 불소제거)

  • Kang, Min-Koo;Shin, Gwan-Woo;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.11
    • /
    • pp.803-808
    • /
    • 2013
  • The purpose of this study was performed to investigate the optimum conditions of pH, concrete sludge, seed dosage, mixing intensity, operation time in treating fluoride-containing wastewater as $CaF_2$ using the ready-mixed concrete sludge. Considering fluoride removal, water content, that pH 6, concrete sludge dosage of 10 g/L, Seed dosage ($CaF_2$) of 2 g/L, mixing intensity of 100 rpm and operation time of 60 min were found to be optimum. Correspondingly, removal of fluoride and water content was about 85% and 64%, respectively. Increase in amount of seed dosage did not affect fluoride removal efficiency. but the result that the water content is decreased was shown up in occuring the solid-liquid separation well.

Disinfection of E. coli Using Electro-UV Complex Process: Disinfection Characteristics and Optimization by the Design of Experiment Based on the Box-Behnken Technique (전기-UV 복합 공정을 이용한 E. coli 소독 : 실험계획법중 박스-벤켄법을 이용한 소독 특성 및 최적화)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.19 no.7
    • /
    • pp.889-900
    • /
    • 2010
  • The experimental design and response surface methodology (RSM) have been applied to the investigation of the electro-UV complex process for the disinfection of E. coli in the water. The disinfection reactions of electro-UV process were mathematically described as a function of parameters power ($X_1$), NaCl dosage ($X_2$), initial pH ($X_3$) and disinfection time ($X_4$) being modeled by use of the Box-Behnken technique. The application of RSM using the Box-Behnken technique yielded the following regression equation, which is an empirical relationship between the residual E. coli number and test variables in actual variables: Ln (CFU) = 23.57 - 0.87 power - 1.87 NaCl dosage - 2.13 pH - 2.84 time - 0.09 power time - 0.07 NaCl dosage pH + 0.14 pH time + 0.03 $power^2$ + 0.47 NaCl $dosage^2$ + 0.20 $pH^2$+ 0.33 $time^2$. The model predictions agreed well with the experimentally observed result ($R^2$ = 0.9987). Graphical response surface and contour plots were used to locate the optimum point. The estimated ridge of maximum response and optimal conditions for the E. coli disinfection using canonical analysis was Ln 1.06 CFU (power, 15.40 W; NaCl dosage, 1.95 g/L, pH, 5.94 and time, 4.67 min). To confirm this optimum condition, the obtained number of the residual E. coli after three additional experiments were Ln 1.05, 1.10 and Ln 1.12. These values were within range of 0.62 (95% PI low)~1.50 (95% PI high), which indicated that conforming the reproducibility of the model.

Optimization of coagulant dosage using response surface methodology with central composite design (반응표면분석법-중심합성계획을 이용한 최적 응집제 주입량 산정 연구)

  • Kim, Yeseul;Oh, Jeill
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.2
    • /
    • pp.193-202
    • /
    • 2015
  • The determining the appropriate dosage of coagulant is very important, because dosage of coagulant in the coagulation process for wastewater affects removing the amount of pollutants, cost, and producing sludge amount. Accordingly, in this study, in order to determine the optimal PAC dosage in the coagulation process, CCD (Central composite design) was used to proceed experimental design, and the quadratic regression models were constructed between independent variables (pH, influent turbidity, PAC dosage) and each response variable (Total coliform, E.coli, PSD (Particle size distribution) (< $10{\mu}m$), TP, $PO_4$-P, and $COD_{cr}$) by the RSM (Response surface methodology). Also, Considering the various response variables, the optimum PAC dosage and range were derived. As a result, in order to maximize the removal rate of total coliform and E.coli, the values of independent variables are the pH 6-7, the influent turbidity 100-200 NTU, and the PAC dosage 0.07-0.09 ml/L. For maximizing the removal rate of TP, $PO_4$-P, $COD_{cr}$, and PSD(< $10{\mu}m$), it is required for the pH 9, the influent turbidity 200-250 NTU, and the PAC dosage 0.05-0.065 ml/L. In the case of multiple independent variables, when the desirable removal rate for total coliform, E.coli, TP, and $PO_4$-P is 90-100 % and that for $COD_{cr}$ and PSD(< $10{\mu}m$) is 50-100 %, the required PAC dosage is 0.05-0.07 ml/L in the pH 9 and influent turbidity 200-250 NTU. Thus, if the influent turbidity is high, adjusting pH is more effective way in terms of cost since a small amount of PAC dosage is required.