• Title/Summary/Keyword: Optimum Tool Design

Search Result 282, Processing Time 0.027 seconds

Optimization Of PV System Design with Parameter Conditions (파라메터 조건에 따른 PV시스템의 최적설계)

  • So J. H.;Yu G. J.;Jung M. W.;Lee J. K.;Seok J. K.;Choi J. Y.
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.576-579
    • /
    • 2002
  • This paper compares the performances of estimate by computer simulation considering parameters of system specifications, Installation and surrounding conditions with those of real PV system and show verification of designed value. We evaluate the performances of PV system with changing of parameter, specially a field type and suggest optimum condition in each field type. In the future, We will Intend to develop an analysis tool and construct database for optimum design of PV system.

  • PDF

결합된 자기공명을 통한 무선에너지 전력 전송 시스템의 회로 해석

  • Jeon, Sang-Hun;Kim, Yong-Hae;Lee, Myeong-Rae;Gang, Seung-Yeol
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.405-407
    • /
    • 2010
  • Simple equivalent circuit model is developed for wireless energy transfer system via coupled magnetic resonances and practical design method is also provided. Node equations for the resonance system are built with the method expanding transformer's equations and the optimum distances of coils in the system is derived analytically for optimum coupling coefficients for high transfer efficiency. Moreover, to calculate the frequency characteristics for a lossy system the equivalent model is established at an electric design automation tool. The model parameters of the actual system are extracted and the results of modeling are compared with the measurement. Through the developed model, we can understand the principles that the system shows higher efficiency than conventional magnetic coupling systems and impedance matching is important to achieve high efficiency.

  • PDF

Analysis for Optimal Design of PV System (태양광 발전시스템의 최적설계를 위한 운전특성 분석)

  • So, J.H.;Yu, G.J.;Jung, M.W.;Choi, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.281-285
    • /
    • 2002
  • This paper compares not only the performances of estimate by computer simulation considering parameters of system specifications, installation and surrounding conditions with those of real PV system and but also shows verification of designed value. We evaluate the performances of PV system with changing of parameter, specialty a field type and suggest optimum condition in each field type. in the future, we will intend to develop an analysis tool and construct database for optimum design of PV system.

  • PDF

Development of Object-Oriented C++ Library of Optimization Algorithms (최적화 알고리듬들의 객체지향 C++ 라이브러리의 개발)

  • Hyun, Chang-Hun;Choe, Yeong-Il
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.115-123
    • /
    • 2000
  • There are many optimal design packages, but they are big ones and they have only a few kinds of optimal algorithm coded with Fortran and it is sometimes necessary for user to write down some codes into their packages. So it is hard for user to learn how to use and customize them. More over, there are no commercial home-made software for optimum design. So, in this paper, several famous optimum algorithms are coded and modulized with C++ which is known as a suitable computer language in order to build up more algorithms into one computer software. All algorithms developed with C++ here were tested for comparison with optimization tool box of MATLAB and are superior to MATLAB.

  • PDF

A Study on the Optimum Design for Energy Saving of an Auto Transmission Part (자동변속기용 부품의 에너지 절감을 위한 최적 설계 연구)

  • Lee, H.S.;Kim, T.H.;Kim, S.H.;Hong, E.C.;Lee, J.H.
    • Transactions of Materials Processing
    • /
    • v.24 no.3
    • /
    • pp.181-186
    • /
    • 2015
  • Many in the industrial world that consume high amounts of energy are trying to reduce energy when manufacturing their products. Energy saving during manufacturing is a cost reduction. Reduced cost is necessary for profit improvement. The Piston Under Drive Brake used in the current study is an automotive transmission part. The original machining after hot forging was changed to machining after cold forging of a plate in order to save energy and cost. Two extrusion shapes along the outer diameter caused decreased tool life because of the interrupted cut during turning. Therefore, a thickness reduction of two extrusion areas in the outer diameter was needed. The current study suggests an effective way to reduce the thickness of interrupted cut by using progressive blanking.

Optimization of the braced dome structures by using Jaya algorithm with frequency constraints

  • Grzywinski, Maksym;Dede, Tayfun;Ozdemir, Yaprak Itir
    • Steel and Composite Structures
    • /
    • v.30 no.1
    • /
    • pp.47-55
    • /
    • 2019
  • The aim of this paper is to present new and an efficient optimization algorithm called Jaya for the optimum mass of braced dome structures with natural frequency constraints. Design variables of the bar cross-section area and coordinates of the structure nodes were used for size and shape optimization, respectively. The effectiveness of Jaya algorithm is demonstrated through three benchmark braced domes (52-bar, 120-bar, and 600-bar). The algorithm applied is an effective tool for finding the optimum design of structures with frequency constraints. The Jaya algorithm has been programmed in MATLAB to optimize braced dome.

Simulation-based Prediction Model of Draw-bead Restraining Force and Its Application to Sheet Metal Forming Process (유한요소법을 이용한 드로우비드 저항력 예측모델 개발 및 성형공정에의 적용)

  • Bae, G.H.;Song, J.H.;Huh, H.;Kim, S.H.;Park, S.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.06a
    • /
    • pp.55-60
    • /
    • 2006
  • Draw-bead is applied to control the material flow in a stamping process and improve the product quality by controlling the draw-bead restraining force (DBRF). Actual die design depends mostly on the trial-and-error method without calculating the optimum DBRF. Die design with the predicted value of DBRF can be utilized at the tryout stage effectively reducing the cost of the product development. For the prediction of DBRF, a simulation-based prediction model of the circular draw-bead is developed using the Box-Behnken design with selected shape parameters such as the bead height, the shoulder radius and the sheet thickness. The value of DBRF obtained from each design case by analysis is approximated by a second order regression equation. This equation can be utilized to the calculation of the restraining force and the determination of the draw-bead shape as a prediction model. For the evaluation of the prediction model, the optimum design of DBRF in sheet metal forming is carried out using response surface methodology. The suitable type of the draw-bead is suggested based on the optimum values of DBRF. The prediction model of the circular draw-bead proposes the design method of the draw-bead shape. The present procedure provides a guideline in the tool design stage for sheet metal forming to reduce the cost of the product development.

  • PDF

Optimization of Side Gate in the Design for Nano Structure Double Gate MOSFET (나노 구조 Double Gate MOSFET 설계시 side gate의 최적화)

  • 김재홍;고석웅;정학기
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.490-493
    • /
    • 2002
  • In this study, we have investigated optimum value for side gate length and side gate voltage of double gate (DG) MOSFET with main gate and side gate. We know that optimum side gate voltage for each side length is about 3V. Also, we know that optimum side gate length for each main gate length is about 70nm. We have presented the transconductance and subthreshold slope for each side gate length. We have simulated using ISE-TCAD tool for characteristics analysis of device.

  • PDF

Optimum Operating Condition of Air Heating Solar Collector Regenerator Using RSM Technique (RSM 기법을 애용한 태양열 집열판 재생기의 운전 조건 최적화)

  • Jung Jae-ho
    • Proceedings of the KAIS Fall Conference
    • /
    • 2004.06a
    • /
    • pp.89-91
    • /
    • 2004
  • This study examines a regeneration process using hot air heated by solar radiation to recover absorption potential by evaporating moisture in liquid desiccant. More specifically, this study is aimed at finding the optimum operating condition of the regenerator by utilizing a well-established statistical tool, so-called design of experiment, and optimization techniques. It is demonstrated that an optimization model to find the optimum operating condition can be obtained using the functional relationship between regeneration rate and affecting factors which is approximated on the basis experimental results.

  • PDF

The Joints Characteristics of Al 5052 Aluminium Alloy in Friction Stir Welds (마찰교반 용접조건에 따른 Al 5052 알루미늄 합금의 접합특성)

  • Kang, Dae-Min;Jang, Jin-Suk;Park, Kyong-Do;Lee, Dai-Yeal
    • Journal of Power System Engineering
    • /
    • v.20 no.3
    • /
    • pp.51-56
    • /
    • 2016
  • In this study, the tensile tests and hardness tests were carried out for the joints characteristics in friction stir welds of Al 5052 alloy. Three way factorial design was applied to optimal welding conditions, whose control factors were shoulder diameter, rotation speed and welding speed of tool. From the results of this study, the optimum condition for maximum yield strength was predicted as the shoulder diameter of 15 mm, welding speed of 500mm/min and rotating speed of 1000 rpm. And the presumed optimal yield strength was estimated to be $167.36{\pm}7.82MPa$ with 99% reliability. In addition the increaser rotation speed of tool and the decreaser welding speed, the decreaser the hardness at welding part.