• Title/Summary/Keyword: Optimum Tool Design

Search Result 282, Processing Time 0.022 seconds

Development of the High Utility Progressive Die for Sheet Metal Forming (Part 1)

  • Sim, Sung-Bo;Song, Young-Seok;Sung, Yul-Min
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.228-230
    • /
    • 2000
  • The multiforming progressive die are multiple operations performed by means of a die having above two stages, jon the each of stages performs a different operation as the sheet metal passes through the die hole. In the field of design and making tool for press working, the progressive die for sheet metal (SPC, thickness :2mm) is a specific division. In order to prevent the defects, the optimum design of the production part, strip layout, die design, die making and tryout etc. are necessary. They require analysis of many kinds of important factors, i.e. theory an practice of metal press working and its phenomena, die structure, machining condition for die making, die materials, heat treatment of die components, know-how and so on. In this study, we designed and constructed a multiforming progressive die as a U-bending working of multi-stage and performed try out. out of these processes the die development could be taken for advance. Especially the result of tryout and its analysis become the characteristics of this paper (part 1 and part 2) that nothing might be ever seen before such as this type of research method on all the processes. In the par 1 of this study we treated die design mostly.

  • PDF

Development of the Practical and Adaptive Die of Piloting Stripper Type for Sheet Metal (part 1)

  • Sim, Sung-Bo;Sung, Yul-Min;Song, Young-Seok;Park, Hae-Kyoung
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.109-113
    • /
    • 2000
  • The piercing and blanking of thin sheet metal working with a pilot punch guide is specified division in press die design and making. In order to prevent the detects, the optimum design of the production part, strip process layout, die design, die making and try out etc. are necessary the analysis of effective factors. For example, theory and practice of metal shearing process and its phenomena, die structure, machine tool working for die making, die materials and its heat treatment, metal working in industrial and its know how etc. In this study, we analyzed whole of data base, theoretical back ground of metal working process, and then performed the progressive die tryout with the screw press. This study regards to the aim of small quantity of production part's press working by piloting for accurate guide of actual sheet metal strip. Part 1 of this study reveals with production part and strip process layout for the die design.

  • PDF

MULTI STAGE SHAPE OPTIMIZATION OF CENTRIFUGAL FAN FOR HOME APPLIANCE USING CFD (전산유체역학을 활용한 가전 제품용 원심팬 블레이드의 단계별 형상 최적화)

  • Kim, J.S.;Kang, T.G.
    • Journal of computational fluids engineering
    • /
    • v.21 no.3
    • /
    • pp.39-47
    • /
    • 2016
  • We conducted a multi-stage optimization to secure the desired performance of a centrifugal fan for home appliance in an early stage of product development. In optimization, the static pressure at the outlet of the fan is chosen as an objective function that is to be maximized, providing the required flow rate at the operating point of the fan. The optimization procedure begins with parameters for an initial baseline fan design. The baseline design is optimized by using a commercial optimization package. Accordingly, the corresponding blade models with a set of geometrical parameters are generated. Flow through a fan is simulated by solving the Reynolds-averaged Navier-Stokes equations. A multi-stage optimization scheme is employed to determine the family of optimum values for the parameters, leading to the pressure increase at the outlet of the fan. To validate the numerically obtained optimal design parameters, we fabricated the three types of fans using rapid prototyping and assessed the performance using a fan tester. Experimental results show that the design parameters at each stage satisfy the goal of optimization. The multi-stage optimization process turned out to be a useful tool in the development of a centrifugal fan.

A Study on Roll Forming Simulation of Under Rail (언더레일의 롤포밍 공정 시뮬레이션에 관한 연구)

  • Jeong, Sang-Hwa;Lee, Sang-Hee;Kim, Gwang-Ho;Kim, Jae-Sang;Kim, Jong-Tae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.78-85
    • /
    • 2008
  • Roll forming process is one of the most widely used processes in the world for forming metals. It can manufacture goods of the uniform cross section throughout the continuous processing. However, process analysis is very difficult because of the inherent complexity. Therefore, time is consuming and much money are needed for manufacturing goods. In order to overcome this difficulty, a new computational method based on the rigid-plastic finite element method is developed for the analysis of roll forming process. In this paper, the design of roll forming process and the simulation are performed to manufacture the upper member at under rail composed of three members. The cold rolled carbon steel sheet(SCP-1) is used in this simulation, and a flow stress equation is set up by conducting the tensile test. The upper member is designed using two types of design for a excellent design. Each types are simulated and compared with the strain distribution using SHAPE-RF software. In addition, the numerical magnitude of bow and camber which are the buckling phenomenon is estimated.

Circuit Model Based Analysis of a Wireless Energy Transfer System via Coupled Magnetic Resonances (결합된 자기공명을 통한 무선에너지 전력 전송 시스템의 회로 해석)

  • Cheon, Sang-Hoon;Kim, Yong-Hae;Lee, Myung-Lae;Kang, Seung-Youl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.137-144
    • /
    • 2011
  • A Simple equivalent circuit model is developed for a wireless energy transfer system via coupled magnetic resonances and a practical design method is also provided. Node equations for the resonance system are built with the method, expanding on the equations for a transformer, and the optimum distances of coils in the system are derived analytically for optimum coupling coefficients for high transfer efficiency. In order to calculate the frequency characteristics for a lossy system, the equivalent model is established at an electric design automation tool. The model parameters of the actual system are extracted and the modeling results are compared with measurements. Through the developed model, it is seen that the system can transfer power over a mid-range of a few meters and impedance matching is important to achieve high efficiency. This developed model can be used for a design and prediction on the similar systems such as increasing the number of receiving coils and receiving modules, etc.

Development and Efficiency Evaluation of Metropolis GA for the Structural Optimization (구조 최적화를 위한 Metropolis 유전자 알고리즘을 개발과 호율성 평가)

  • Park Kyun-Bin;Kim Jeong-Tae;Na Won-Bae;Ryu Yeon-Sun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.1 s.71
    • /
    • pp.27-37
    • /
    • 2006
  • A Metropolis genetic algorithm (MGA) is developed and applied for the structural design optimization. In MGA, favorable features of Metropolis criterion of simulated annealing (SA) are incorporated in the reproduction operations of simple genetic algorithm (SGA). This way, the MGA maintains the wide varieties of individuals and preserves the potential genetic information of early generations. Consequently, the proposed MGA alleviates the disadvantages of premature convergence to a local optimum in SGA and time consuming computation for the precise global optimum in SA. Performances and applicability of MGA are compared with those of conventional algorithms such as Holland's SGA, Krishnakumar's micro GA, and Kirkpatrick's SA. Typical numerical examples are used to evaluate the computational performances, the favorable features and applicability of MGA. The effects of population sizes and maximum generations are also evaluated for the performance reliability and robustness of MGA. From the theoretical evaluation and numerical experience, it is concluded that the proposed MGA Is a reliable and efficient tool for structural design optimization.

Design of Roll-to-Roll Forming Process for Micro Pattern on the Thin Sheet Metal by Finite Element Analysis (유한요소해석을 이용한 마이크로 박판 미세 패턴 롤-롤 성형공정 설계)

  • Cha, S.H.;Shin, M.S.;Lee, H.J.;Kim, J.B.
    • Transactions of Materials Processing
    • /
    • v.19 no.3
    • /
    • pp.167-172
    • /
    • 2010
  • Roll-to-roll forming process is one of important metal processing technology because the process is simple and economical. These days, with these merits, roll-to-roll forming process is tried to be employed in manufacturing the circuit board, barrier ribs and solar cell plate. However, it is difficult to apply to the forming of micro scale or sub-micro scale pattern. In this study, the roll forming processing for the micro scale is designed and analyzed. The forming of micro pattern for small electric device such as LCD panel by incremental roll forming process is analyzed. Firstly, the optimum analysis conditions are found by several analyses. And then, formability is analyzed for various protrusion shapes at various forming temperatures. The formability is evaluated in terms of filling ratio and damage value. The filling ratio is defined from the tool geometry and critical damage is determined from the analysis of uniaxial tensile test. Finally, optimum forming conditions that guarantee the successful forming are found.

Optimum Design of Sandwich Panel Using Hybrid Metaheuristics Approach

  • Kim, Yun-Young;Cho, Min-Cheol;Park, Je-Woong;Gotoh, Koji;Toyosada, Masahiro
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.6
    • /
    • pp.38-46
    • /
    • 2003
  • Aim of this article is to propose Micro-Genetic Simulated Annealing (${\mu}GSA$) as a hybrid metaheuristics approach to find the global optimum of nonlinear optimisation problems. This approach combines the features of modern metaheuristics such as micro-genetic algorithm (${\mu}GAs$) and simulated annealing (SA) with the general robustness of parallel exploration and asymptotic convergence, respectively. Therefore, ${\mu}GSA$ approach can help in avoiding the premature convergence and can search for better global solution, because of its wide spread applicability, global perspective and inherent parallelism. For the superior performance of the ${\mu}GSA$, the five well-know benchmark test functions that were tested and compared with the two global optimisation approaches: scatter search (SS) and hybrid scatter genetic tabu (HSGT) approach. A practical application to structural sandwich panel is also examined by optimism the weight function. From the simulation results, it has been concluded that the proposed ${\mu}GSA$ approach is an effective optimisation tool for soloing continuous nonlinear global optimisation problems in suitable computational time frame.

A Study on the Improvement of Cutting Force and Surface Roughness in MQL Turning (MQL 선삭가공에서 절삭력과 표면거칠기 향상에 관한 연구)

  • Hwang Young-Kug;Chung Won-Jee;Jung Jong-Yun;Lee Choon-Man
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.4
    • /
    • pp.83-91
    • /
    • 2006
  • At present, industry and researchers are looking for ways to reduce the use of lubricants because of ecological and economical reasons. Therefore, metal cutting is to move toward dry cutting or semi-dry cutting. One of the technologies is known as MQL(Minimum Quantity Lubrication) machining. This research presents an investigation into MQL machining with the objective of deriving the optimum cutting conditions for the turning process of SM4SC. To reach these goals several finish turning experiments were carried out, varying cutting speed, feed rate, oil quantity and so on, with MQL and flood coolant. The surface roughness and cutting force results of tests were measured and the effects of cutting conditions were analyzed by the method of Analysis of Variance(ANOVA). From the experimental results and ANOVA, this research proposed optimal cutting conditions to improve the machinability in MQL turning process.

A Study on Practical Tool Education for Improving Injection Molding Quality (사출성형품질 개선을 위한 실무금형교육에 관한 연구)

  • Shin, Ju-kyung
    • Journal of Practical Engineering Education
    • /
    • v.8 no.2
    • /
    • pp.121-128
    • /
    • 2016
  • In injection molding process, the appearance quality issue occurs in most injection molded article. One of thermal designs for the mold was performed by increasing the cavity wall temperature with being as uniform as possible in any position. On the basis of the practical evaluation, the cavity wall temperature and finishing machined cavity surface under the optimum processing conditions are the most significant factors to avoid the appearance issue on the plastic part for a good cosmetic quality. Also, the wrong choice of gate type and location can have a considerable effect on the quality of a molded part and it's so important to keep the correct runner balance from each cavity. We've proposed the education training model of the practical tool technology course for the field oriented education to improve practical tool technology ability and optimized tooling design for injection molding quality which can be performed at the workplace substantially.