• 제목/요약/키워드: Optimum Target Value

Search Result 76, Processing Time 0.024 seconds

The optimum damping retrofit for cabinet structures of NPP by μ-GA (μ-GA를 이용한 원전 캐비닛구조물의 최적감쇠보강)

  • Lee, Gye-Hee;Ha, Dong-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.1 s.41
    • /
    • pp.1-7
    • /
    • 2005
  • The optimal seismic retrofitting of NPP(Nuclear Power Plant) cabinet structures that contain seismic category 1 relays was studied in this paper. During earthquake event, the failure modes of relays are not appeared in form of structural failure, but are appeared in form of contact chatter of relay. Therefore, the retrofitting of cabinet has to be aimed at the reducing of the structural response, such as acceleration. In this study, the optimal characteristic values of dampers were searched by ${\mu}$-GA (micro-Genetic Algorithm) scheme for several installation patterns. To keep accuracy and efficiency of analysis, the structural models of cabinet were considered as a frame structure. The responses of structure were obtained inform of acceleration response spectra derived from the results of nonlinear time history analysis including damping nonlinearity. The objective function of the optimum procedure was constructed based on the maximum ratio of maximum spectral value and target GERS (General Equipment Ruggedness Spectra). The results show the good improvements of fitness for adequate retrofitting pattern. Especially, the improvements of fitness were remarkable when the values of damping exponents are low.

A Study on the Repair Parts Inventory Cost Estimation and V-METRIC Application for PBL Contract (PBL 계약을 위한 수리부속 재고비용 예측과 V-METRIC의 활용에 관한 연구)

  • Kim, Yoon Hwa;Lee, Sung Yong
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.13 no.1
    • /
    • pp.79-88
    • /
    • 2017
  • For the PBL contract, it is necessary for the contracting parties to share information regarding the reasonable inventory-level and the cost of its repair parts for the estimated demand. There are various models which can be used for this purpose. Among them, V-METRIC model is considered to be the most efficient and is most frequently applied. However, this model is usually used for optimizing the inventory level of the repair parts of the system under operation. The model uses a time series forecast model to determine the demand rate, which is a mandatory input factor for the model, based on past field data. However, since the system at the deployment stage has no operational performance record, it is necessary to find another alternative to be used as the demand rate of the model application. This research applies the V-METRIC model to find the optimal inventory level and cost estimation for repairable items to meet the target operational availability, which is a key performance indicator, at the time of the PBL contract for the deployment system. This study uses the calculated value based on the allocated MTBF to the system as the demand rate, which is used as input data for the model. Also, we would like to examine changes in inventory level and cost according to the changes in target operational availability and MTBF allocation.

Evaluation of Brightness and Environmental Load by Hydrogen Peroxide Bleaching Conditions of TMP (TMP의 과산화수소 표백조건에 따른 백색도 및 환경부하 평가)

  • Ahn, Chi-Deuk;Seo, Jin-Ho;Kim, Hyoung-Jin;Chung, Sung-Hyun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.3
    • /
    • pp.20-27
    • /
    • 2014
  • Nowadays, the bleaching techniques of thermomechanical pulp(TMP) are fast developing on the strength of some benefits, mainly on low production cost and good fiber property. In this study, the optimum concentration of bleaching chemicals and the environmental load of bleaching wastes were considered to improve the bleaching efficiency of thermomechanical pulp using Korean redpine(Pinus densiflora) under the peroxide-based bleaching system. The optical property of TMP after bleaching was planned to use higher grade of paper, like printing & writting paper, not general newspaper. The concentration of bleaching chemicals, NaOH, $Na_2SiO_3$ and EDTA, in hydrogen peroxide bleaching system, on the basis of O.D. pulp was closely influenced on the improvement of TMP brightness. Final target of bleaching efficiency was set up to above 76%-ISO brightness. The optimal target brightness of Korean redpine TMP was reached to 76.45%-ISO under the conditions of $H_2O_2$ 7% with NaOH 2.20%, $Na_2SiO_3$ 0.63% and EDTA 0.02%. The concentration of NaOH, $Na_2SiO_3$ and EDTA was correlated functional to the residual peroxide content of wastewater, pH value and electric conductivity of TMP fibers after bleaching treatment. The optimal bleaching conditions by controlling the addition amount of chemicals were positively contributed to the brightness stabilization and environmental load of TMP.

Development of Power Demand Forecasting Algorithm Using GMDH (GMDH를 이용한 전력 수요 예측 알고리즘 개발)

  • Lee, Dong-Chul;Hong, Yeon-Chan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.360-365
    • /
    • 2003
  • In this paper, GMDH(Croup Method of Data Handling) algorithm which is proved to be more excellent in efficiency and accuracy of practical use of data is applied to electric power demand forecasting. As a result, it became much easier to make a choice of input data and make an exact prediction based on a lot of data. Also, we considered both economy factors(GDP, export, import, number of employee, number of economically active population and consumption of oil) and climate factors(average temperature) when forecasting. We assumed target forecast period from first quarter 1999 to first quarter 2001, and suggested more accurate forecasting method of electric power demand by using 3-step computer simulation processes(first process for selecting optimum input period, second for analyzing time relation of input data and forecast value, and third for optimizing input data) for improvement of forecast precision. The proposed method can get 0.96 percent of mean error rate at target forecast period.

The Optimal Design of Air Bearing Sliders of Optical Disk Drives by Using Simulated Annealing Technique (SA 기법을 이용한 광디스크 드라이브 공기베어링 슬라이더의 최적설계)

  • Chang, Hyuk;Kim, Hyun-Ki;Kim, Kwang-Sun;Rim, Kyung-Hwa
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1545-1551
    • /
    • 2002
  • The optical storage device has recently experienced significant improvement, especially for the aspects of high capacity and fast transfer rate. However, it is necessary to study a new shape of air bearing surface for the rotary type actuator because the optical storage device has the lower access time than that of HDD (Hard Disk Drives). In this study, we proposed the air bearing shape by using SA (Simulated Annealing) algorithm which is very effective to achieve the global optimum instead of many local optimums. The objective of optimization is to minimize the deviation in flying height from a target value 100nm. In addition, the pitch and roll angle should be maintained within the operation limits.

A Study on the Disk Type MHD Generator Using a Shock Tube (충격파관을 이용한 DISK형 MHD발전기에 관한 연구)

  • 배철오;신명철;김윤식;길경석
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.2
    • /
    • pp.447-453
    • /
    • 1999
  • In MHD power generation system, enthalpy of the working gas is convened to electric power directly through expansion in generator channel. It means that electric power can be generated without a moving mechanical linkage such as turbine blades. The principle of MHD generation is based on Faraday'law of induction that eletromotive force(u$\times$B) is generated when the working gas of velocity u flows a channel in which magnetic field of strength(B) exists. In this paper, helium gas seeded with cesium is used as working gas. There are two types of generator in MHD generation; linear type faraday and disk type hall generator. Rogowski coils having the bandwidth of the 100(Hz) ~ 20(kHz) were used for measuring current flowing MHD disk channel. Optimum load resistor value of the MHD generator studied was 2.5[$\Omega$]. Disk type hall generator's generation performance is the main target of this paper, which superiors to linear type Faraday generator in many points. Isentropic efficiency and enthalpy extraction rate of disk type shock tube driven hall generator is discussed here.

  • PDF

Purification and Characterization of Acetolactate Synthase from Barley

  • Chong, Chom-Kyu;Chang, Soo-Ik;Choi, Jung-Do
    • BMB Reports
    • /
    • v.30 no.4
    • /
    • pp.274-279
    • /
    • 1997
  • Acetolactate synthase (ALS) catalyzes the first common step in the biosynthesis of branchedchain amino acids, valine, leucine, and isoleucine. ALS is the target site for several structually diverse classes of herbicides including sulfonylureas, imidazolinones. and triazolopyrimidines. We have purified ALS from etiolated barley shoots to homogeneity. The five major purification steps are ammonium sulfate fractionation, DEAE anion exchange, hydroxylapatite, Bio-Gel A gel filtration, and low pressure Mono-Q chrornatoqraphy. Approximately 170-fold purification was achieved and the yield was 0.45% of initial activity in the crude extract. Both SDS-PAGE and Western blot analysis showed a single polypeptide of ALS with an apparent molecular mass of 64 kDa. The result of nondenaturing gel electrophoresis with activity staining indicated that the molecular mass of its native form is approximately 225 to 250 kDa. The values of $K_m$ for pyruvate. pl. and optimum pH of ALS were determined to be 2.0 mM, 5.2. and 7.0. respectively Feedback inhibition studies showed that ALS is more susceptible to leucine than valine. And $IC_{50}$ value of Cadre, a class of irnidazolinones, is about $1.5\mu{M}$ for ALS.

  • PDF

Effect of Glass Fiber Contents on the Tensile Strength in Injection Molding Process (사출성형공정에서 유리섬유함유량이 인장강도에 미치는 영향)

  • 김영수;김인관
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.5
    • /
    • pp.63-69
    • /
    • 2000
  • The main target of this research is investigating the relations between mechanical properties and injection conditions, like injection pressure, packing pressure and packing time for various contents ratio of glass fiber and resin. In general idea, high injection pressure produces high strength of molded parts as a monotonic function. but it was revealed that high pressure does not make high strength directly through various experiments of injection molding. In this experiments, PA66 was selected as resin and Glass Fiber was selected as reinforcing fiber Fiber reinforcement was controlled, as 14%, 25%, 33%, 44% of total volume and packing pressure was divided 55%, 65%, 75%, 85% of reference pressure, i.e. 100% equal to 1400kgf/$\textrm{cm}^2$. Finally, tensile testing was executed for injected test specimen. Optimum results based on authors' experiments have been obtained under conditions of 25% and 33% of glass fiber contents. Tensile strength rather depends on the packing pressure and packing time than injection pressure. Especially almost equal value of tensile strength was obtained for various percentage of packing and injection pressure as 65%, 75% and 85% of reference pressure.

  • PDF

Structural and Electrical Properties of Cu(In,Ga)Se2 Thin Films Prepared by RF Magnetron Sputtering without Selenization (셀렌화 공정을 제외한 RF 마그네트론 스퍼터링으로 제작된 Cu(In,Ga)Se2 박막의 구조 및 전기적 특성)

  • Choi, Jung-Kyu;Hwang, Dong-Hyun;Son, Young-Guk
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.2
    • /
    • pp.75-79
    • /
    • 2013
  • A one-step route was developed to fabricate $Cu(In,Ga)Se_2$ (CIGS) thin films by radio frequency (RF) magnetron sputtering from a single quaternary $CuIn_{0.75}Ga_{0.25}Se_2$ target. The effects of the substrate temperatures on the structural and electrical properties of the CIGS layers were investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS) and Hall effect measurements. All the deposited films showed a preferential orientation along the (112) direction. The films deposited at $300^{\circ}C$ and $400^{\circ}C$ revealed that chalcopyrite main (112) peak and weak prominent peaks of (220)/(204) and (312)/(116), indicating polycrystalline structures. The element ratio of the deposited film at $300^{\circ}C$ were almost the same as the near-optimum value. The carrier concentration of the films decreased with increasing substrate temperatures.

Robust feedback-linearization control for axial power distribution in pressurized water reactors during load-following operation

  • Zaidabadi nejad, M.;Ansarifar, G.R.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.97-106
    • /
    • 2018
  • Improved load-following capability is one of the most important technical tasks of a pressurized water reactor. Controlling the nuclear reactor core during load-following operation leads to some difficulties. These difficulties mainly arise from nuclear reactor core limitations in local power peaking: the core is subjected to sharp and large variation of local power density during transients. Axial offset (AO) is the parameter usually used to represent the core power peaking. One of the important local power peaking components in nuclear reactors is axial power peaking, which continuously changes. The main challenge of nuclear reactor control during load-following operation is to maintain the AO within acceptable limits, at a certain reference target value. This article proposes a new robust approach to AO control of pressurized water reactors during load-following operation. This method uses robust feedback-linearization control based on the multipoint kinetics reactor model (neutronic and thermal-hydraulic). In this model, the reactor core is divided into four nodes along the reactor axis. Simulation results show that this method improves the reactor load-following capability in the presence of parameter uncertainty and disturbances and can use optimum control rod groups to maneuver with variable overlapping.