• 제목/요약/키워드: Optimum Concentration

검색결과 3,243건 처리시간 0.029초

크롬과 시안이 공존하는 폐수의 전해처리 특성 (Characteristics of Electrolytic Treatment for Chromium and Cyanide containing Wastewater)

  • 정일현;윤용수
    • 환경위생공학
    • /
    • 제13권3호
    • /
    • pp.85-92
    • /
    • 1998
  • In this study, the electrolytic treatment by one-stage electrolysis was investigated for electroplating wastewater containing $Cr^{6+}$ and $CN^{-}$. From the results, we concluded as follows : Optimum initial pH of wastewater was pH : 3. Amount of optimum addition of electroltyte(NaCl) was 0.1 wt%. Optimum potential for electrolysis was 5 volt. Concentration and removal efficiency for $Cr^{6+}$ and $CN^{-}$ were under 1 mg/L and above 99% at optimum conditions. And the feasibility of electrolytic treatment for electroplating wastewater containing $Cr^{6+}$ and $CN^{-}$ was certified.

  • PDF

고밀도 DRAM 캐패시터에서 HSG-Si형성의 공정최적화에 관한 연구 (A Study on the Optimum Process Conditions of Hemispherical trained Silicon formation for High Density DRAM'S Capacitor)

  • 정양희;강성준
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2001년도 추계종합학술대회
    • /
    • pp.634-639
    • /
    • 2001
  • In this paper, we discuss optimum process conditions of Hemispherical Grained Silicon formation for high density DRAM'S capacitor. In optimum process renditions, the phosphorous concentration, storage polysilicon deposition temperature and thickness of hemispherical grain silicon are in the range of 3.0-4.0E19atoms/㎤, 53$0^{\circ}C$ and 40(equation omitted), respectively. in the 64M bit DRAM capacitor using optimum process conditions, limit thickness of nitride is about 65(equation omitted). The results obtained in this study are applicable to process control and HSG-Si formation for high reliability and high density DRAM's capacitor.

  • PDF

인삼사포닌이 비둘기 가슴근육으로부터 분리된 Malate Dehydrogenase의 조절기능에 미치는 영향 (Effects of Ginseng Saponin on the Regu lately Properties of Malate Dehydrogenase from Pigeon Breast Muscle)

  • 김두하;신문희;홍순근
    • Journal of Ginseng Research
    • /
    • 제7권1호
    • /
    • pp.80-87
    • /
    • 1983
  • In an endeavour to elucidate effects of ginseng on some characteristics of enzymes, malate dehydrogenase (EC 1.1.1.37) was chosen as a model enzyme and effects of ginseng saponin on the enzyme such as optimum pH, product inhibition, optimum temperature and the activity was investigated. The product inhibition by NADH-a reaction product of the enzyme-was increased 33% by 0.3% ginseng saponin. And the optimum pH of the enzyme was 8.3 but in the presence of 0.3% ginseng saponin it increased to 8.5. The enzyme activity and the optimum temperature was not affected by ginseng saponin in the concentration of 1.0% and 0.3%, respectively. In this work, the possibility of contribution of ginseng saponin to the adaptogen activity is suggested; Potentiation of the regulatory activity of an enzyme may contribute to the normalization of the physiological state and consequently may increase the nonspecific resistance of an organism.

  • PDF

A Study on Optimum Distribution of Story Shear Force Coefficient for Seismic Design of Multi-story Structure

  • Oh, Sang Hoon;Jeon, Jongsoo
    • 국제초고층학회논문집
    • /
    • 제3권2호
    • /
    • pp.121-145
    • /
    • 2014
  • The story shear force distributions of most seismic design codes generally reflect the influences of higher vibration modes based on the elastic deformations of structures. However, as the seismic design allows for the plastic behavior of a structure, the story shear force distribution shall be effective after it is yielded due to earthquake excitation. Hence this study conducted numerical analyses on the story shear force distributions of most seismic design codes to find out the characteristics of how a structure is damaged between stories. Analysis results show that the more forces are distributed onto high stories, the lower its concentration is and the more energy is absorbed. From the results, this study proposes the optimum story shear force distribution and its calculation formula that make the damages uniformly distributed onto whole stories. Consequently, the story damage distribution from the optimum calculation formula was considerably more stable than existing seismic design codes.

Preliminary Study on the Regeneration of Spent Electro-decontamination Solution Using Phosphoric Acid and Oxalic Acid

  • Naznin, Marufa;Septian, Ardie;Shin, Won Sik
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2015년도 추계학술논문요약집
    • /
    • pp.465-466
    • /
    • 2015
  • In this study, different amount of (fe(0)) were dissolve into different strength of phosphoric ($H_3PO_4$) acid and the optimum solubility was observed at 0.89M Fe(0) into 4M of $H_3PO_4$ acid. Different concentration of oxalic acid was added to determine the optimum precipitated condition. The dissolution kinetics of Fe(0) into $H_3PO_4$ acid was investigated at $40-50^{\circ}C$. The optimum Fe-oxalate precipitate was dried and thermal decomposition using DSC-TG was conducted. Approximately 52 wt(%) of oxalic acid was removed at $300^{\circ}C$. Iron oxides such as magnetite and hematite that may be formed on the surface of nuclear waste were also dissolved into the $H_3PO_4$ acid and the optimum solubility for magnetite is 0.005M while that for hematite is 0.02M in 8M $H_3PO_4$ acid, respectively.

  • PDF

$Pb_{2}Sr_{2}(Y_{1-x}Ca_{x})Cu_{3}O_{8+{\delta}}$ 계 화합물의 상평형과 제조 공정

  • 정동운
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 1994년도 추계 학술발표 강연 및 논문 개요집
    • /
    • pp.118-118
    • /
    • 1994
  • Processings of the P $b_2$S $r_2$( $Y_{1-x}$ C $a_{x}$) C $u_3$ $O_{8+{\delta}}$ (2213)system for x=0.4-0.6 to control deleterious oxidative decomposition have been studied. Our results show that comounds are stable at both low p $O_2$ and high p $O_2$ if they are suitably oxidized. Various oxidation and deoxidation procedures have been investigated in order tp determine the optimum hole concentration in the Cu $O_2$layers for the maximum $T_{c}$. In cases x=0.5 and x=0.6, the optimum hole concentration in the 2213-phase is achieved, but with accelerated oxidative decomposition. Destite this, the maximum $T_{c}$~80-83K for the 2213-phase can be deduced when x=0.5 to 0.6 to 0.6

  • PDF

Growth of Spirulina platensis in Effluents from Wastewater Treatment Plant of Pig Farm

  • Hong, Seok-San
    • Journal of Microbiology and Biotechnology
    • /
    • 제3권1호
    • /
    • pp.19-23
    • /
    • 1993
  • Spirulina platensis NIES 39 was grown in effluents from a wastewater treatment plant utilizing activated sludge process at a pig farm to reduce pollutants and to produce feed resources. The addition of 2 g/l NaCl was required for the growth of S. platensis in the effluents with about 100 mg/l ammonia nitrogen concentration. The growth was stimulated by the addition of 2 g/l sodium bicarbonate and 4 mg/l ferrous sulfate. The microorganism grew well at pH 8~11, and the optimum pH for the growth was 10. The algal concentration of 1.1 g/l was attained after 8 days of growth at the optimum condition with the removal of 95% ammonia nitrogen and 34% phosphorus.

  • PDF

Hohenbuehelia petaloides의 배양학적 특성에 관한 연구 (Studies on the Cultural Characteristics of Hohenbuehelia petaloides)

  • 유관희;김준호;석순자
    • 한국균학회지
    • /
    • 제29권1호
    • /
    • pp.52-60
    • /
    • 2001
  • This study was carried out to obtain the basic data on artificial culture of Hohenbuehelia petaloides. The optimum medium are glucose peptone medium (GP), Hennerberg medium, Phellinus igniarius medium (PIM), Lentinus edodes medium (LEM), Czapek dox medium. The optimum condition for the mycelial growth was $30^{\circ}C$ and pH 6.0. The carbon sources such as dextrine, fructose and lactose were favorable to mycelial growth. The optimal concentrations of carbon sources are 10% dextrin and fructose. As nitrogen sources, tryptone, casamino acid and histidine appeared to be favorable. The optimal concentrations of nitrogen sources are 1% soy tone and 0.3% ammonium nitrate. The optimal concentration of yeast extract is 0.4%. The mineral nutrients of $KH_2PO_4$, $K_2HPO_4\;and\;MgSO_4{\cdot}7H_2O$ were effective and the optimal concentrations were 0.046, 0.1 and 0.05%, respectively.

  • PDF

견직물의 물성과 염색성 개선에 관한 연구 (A Study on the Improvement of Physical and Dyeing Properties of Silk Fabrics)

  • 장병호;박성윤
    • 한국염색가공학회지
    • /
    • 제4권3호
    • /
    • pp.122-130
    • /
    • 1992
  • To improve the physical properties and the dyeing properties of silk, the silk fabric was treated with urea resin and reactive dyeing. The effects of urea resin concentration, pH of padding bath and curing condition were investigated in order to find optimum condition and the following results are obtained The optimum condition for the crease recovery of silk fabric was urea resin concentration of 80 g/ι, pH of 7, the curings temperature of about 135$^{\circ}C$, and the curing time of 3 minutes. The crease recovery and the thermal insulation ratio of silk fabric were increased by the above treatment. K/S increased as the adding amount of Na$_2$SO$_4$ increased, K/S, however was not affected by the adding amount of Na$_2$CO$_3$. Co1or fastness of the dyed fabrics treated with urea resin were improved slightly compared with untreated ones.

  • PDF

Factors affecting the protoplast formation and regeneration of Bacillus pumilus and Cellulomonas fimi for intergeneric protoplast fusion

  • Kim, D.M.;Lee, K.H.
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 1986년도 추계학술대회
    • /
    • pp.527.3-527
    • /
    • 1986
  • Several factors predicted to affect the protoplast formation and regeneration were investigated. The optimum lysozyme, casamino acid and PVP concentration were 0.5 (mg/$m\ell$), 0.1 (%) and 1.5(%). In B. pumilus, Penicillin-G treatment concentration was 0.3 (U/$m\ell$) and optimum treatment period was transit log. phase. And in the case of Celm. fimi, 0.3 (U/$m\ell$) and initial log. phase. Osmotic stabilizer and di-cation for OSM medium of B.pumilus and Gelm .fimi were 25mM CaCl2, 0.5M sodium sucinate and 50mM MgCl$_2$, 100mM CaCl$_2$, 0.4M sodium succinate. The regeneration frequency of B.pumilus and Celm. fimi were 14.6(%) and 6.9(%).

  • PDF