• Title/Summary/Keyword: Optimizing

Search Result 3,014, Processing Time 0.026 seconds

Effects of Environmental Conditions on Vegetation Indices from Multispectral Images: A Review

  • Md Asrakul Haque;Md Nasim Reza;Mohammod Ali;Md Rejaul Karim;Shahriar Ahmed;Kyung-Do Lee;Young Ho Khang;Sun-Ok Chung
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.4
    • /
    • pp.319-341
    • /
    • 2024
  • The utilization of multispectral imaging systems (MIS) in remote sensing has become crucial for large-scale agricultural operations, particularly for diagnosing plant health, monitoring crop growth, and estimating plant phenotypic traits through vegetation indices (VIs). However, environmental factors can significantly affect the accuracy of multispectral reflectance data, leading to potential errors in VIs and crop status assessments. This paper reviewed the complex interactions between environmental conditions and multispectral sensors emphasizing the importance of accounting for these factors to enhance the reliability of reflectance data in agricultural applications.An overview of the fundamentals of multispectral sensors and the operational principles behind vegetation index (VI) computation was reviewed. The review highlights the impact of environmental conditions, particularly solar zenith angle (SZA), on reflectance data quality. Higher SZA values increase cloud optical thickness and droplet concentration by 40-70%, affecting reflectance in the red (-0.01 to 0.02) and near-infrared (NIR) bands (-0.03 to 0.06), crucial for VI accuracy. An SZA of 45° is optimal for data collection, while atmospheric conditions, such as water vapor and aerosols, greatly influence reflectance data, affecting forest biomass estimates and agricultural assessments. During the COVID-19 lockdown,reduced atmospheric interference improved the accuracy of satellite image reflectance consistency. The NIR/Red edge ratio and water index emerged as the most stable indices, providing consistent measurements across different lighting conditions. Additionally, a simulated environment demonstrated that MIS surface reflectance can vary 10-20% with changes in aerosol optical thickness, 15-30% with water vapor levels, and up to 25% in NIR reflectance due to high wind speeds. Seasonal factors like temperature and humidity can cause up to a 15% change, highlighting the complexity of environmental impacts on remote sensing data. This review indicated the importance of precisely managing environmental factors to maintain the integrity of VIs calculations. Explaining the relationship between environmental variables and multispectral sensors offers valuable insights for optimizing the accuracy and reliability of remote sensing data in various agricultural applications.

Research on the role of Smart Public Facilities -Focusing on public design policy- (스마트 공공시설물의 역할에 관한 연구 -공공디자인 정책을 중심으로-)

  • Son, Dong Joo
    • Journal of Service Research and Studies
    • /
    • v.14 no.3
    • /
    • pp.206-230
    • /
    • 2024
  • Background: The advancement of information and communication technology acts as a key driver in the implementation of smart cities. Smart Public Facilities leverage this technological progress to innovate urban operations, optimizing various city functions, enhancing the quality of public services, and improving citizens' accessibility and convenience. These Smart Public Facilities are introduced for the sustainable development of cities and the enhancement of citizens' quality of life. Method: This study systematically analyzed the public design policies of local governments and examined the use cases of Smart Public Facilities domestically and internationally to evaluate their functions and roles. Through this, the effectiveness and sustainability of public design policies were comprehensively reviewed, and the impact of Smart Public Facilities on urban operations and citizens' lives was analyzed from multiple perspectives. Results: The introduction of Smart Public Facilities significantly enhances the implementation and efficiency of public design policies, playing a crucial role in sustainable urban development and improving citizens' quality of life. Furthermore, positive impacts were observed in various areas such as energy management, transportation systems, and environmental monitoring. Major challenges included managing technological changes, ensuring data privacy and cybersecurity, and strengthening citizen participation. Conclusion: Smart Public Facilities serve as essential infrastructure for improving urban efficiency, sustainability, and citizens' quality of life. Successful implementation and operation require systematic management and citizen participation. Through this, Smart Public Facilities will support sustainable urban development and play a critical role in responding to environmental changes. To ensure that Smart Public Facilities function effectively as urban infrastructure, it is necessary to comprehensively evaluate their impact on the efficiency of public design policies, sustainability, citizens' quality of life, and the local economy, and to suggest concrete measures for their introduction and operation.

Development of an intelligent IIoT platform for stable data collection (안정적 데이터 수집을 위한 지능형 IIoT 플랫폼 개발)

  • Woojin Cho;Hyungah Lee;Dongju Kim;Jae-hoi Gu
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.687-692
    • /
    • 2024
  • The energy crisis is emerging as a serious problem around the world. In the case of Korea, there is great interest in energy efficiency research related to industrial complexes, which use more than 53% of total energy and account for more than 45% of greenhouse gas emissions in Korea. One of the studies is a study on saving energy through sharing facilities between factories using the same utility in an industrial complex called a virtual energy network plant and through transactions between energy producing and demand factories. In such energy-saving research, data collection is very important because there are various uses for data, such as analysis and prediction. However, existing systems had several shortcomings in reliably collecting time series data. In this study, we propose an intelligent IIoT platform to improve it. The intelligent IIoT platform includes a preprocessing system to identify abnormal data and process it in a timely manner, classifies abnormal and missing data, and presents interpolation techniques to maintain stable time series data. Additionally, time series data collection is streamlined through database optimization. This paper contributes to increasing data usability in the industrial environment through stable data collection and rapid problem response, and contributes to reducing the burden of data collection and optimizing monitoring load by introducing a variety of chatbot notification systems.

Status Diagnosis Algorithm for Optimizing Power Generation of PV Power Generation System due to PV Module and Inverter Failure, Leakage and Arc Occurrence (태양광 모듈, 인버터 고장, 누설 및 아크 발생에 따른 태양광발전시스템의 발전량 최적화를 위한 상태진단 알고리즘)

  • Yongho Yoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.4
    • /
    • pp.135-140
    • /
    • 2024
  • It is said that PV power generation systems have a long lifespan compared to other renewable energy sources and require little maintenance. However, there are cases where the performance expected during initial design is not achieved due to shading, temperature rise, mismatch, contamination/deterioration of PV modules, failure of inverter, leakage current, and arc generation. Therefore, in order to solve the problems of these systems, the power generation amount and operation status are investigated qualitatively, or the performance is comparatively analyzed based on the performance ratio (PR), which is the performance index of the solar power generation system. However, because it includes large losses, it is difficult to accurately determine whether there are any abnormalities such as performance degradation, failure, or defects in the PV power generation system using only the performance coefficient. In this paper, we studied a status diagnosis algorithm for shading, inverter failure, leakage, and arcing of PV modules to optimize the power generation of PV power generation systems according to changes in the surrounding environment. In addition, using the studied algorithm, we examined the results of an empirical test on condition diagnosis for each area and the resulting optimized operation of power generation.

Optimizing a Low-resolution Global Ocean Circulation Model Using MOM6 (MOM6 저해상도 전지구 해양순환모델의 최적화 연구)

  • HO CHAN PARK;INSEONG CHANG;HYUNKEUN JIN;GYUNDO PAK;YOUNG-GYU PARK;YOUNG HO KIM
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.29 no.3
    • /
    • pp.139-152
    • /
    • 2024
  • This study conducted various sensitivity experiments to assess and improve the performance of low-resolution global ocean circulation models. The MOM6 (Modular Ocean Model Version 6), developed by the Geophysical Fluid Dynamics Laboratory, was utilized. We focused on analyzing the effects of implementing the ePBL (energetics based planetary boundary layer) mixed layer scheme, including tidal simulation, and applying hybrid vertical coordinate system on the simulation accuracy of ocean circulation. The results revealed that the ePBL scheme effectively mitigated excessive mixed layer thickness and high temperature biases in the equatorial Pacific, while tidal simulations contributed to improving the oceanic structures in the Yellow Sea and the East Sea. Additionally, the hybrid vertical coordinate system enabled more accurate simulations of the vertical structure of temperature and salinity, enhancing model performance. This study proposes specific approaches to enhance the accuracy of ocean circulation models, contributing to global ocean and climate modeling efforts.

Case Study on the Application and Evaluation of an Integrated Medical Service Model to Improve the Quality of Life for Breast Cancer Patients and Caregivers (유방암 환자와 보호자의 삶의 질 증진을 위한 통합의료서비스모델 적용평가 사례 연구)

  • Moon Joo Cheong;Do-Eun Lee;Un Jong Choi;Han Baek Cho;Hyung Won Kang
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.12 no.3
    • /
    • pp.163-178
    • /
    • 2024
  • Purpose : This study aimed to evaluate the effectiveness of an integrative medical service model applied to breast cancer patients and their caregivers, exploring its feasibility and challenges within the context of South Korean healthcare system. Methods : A case study approach was chosen to assess the integrative medical service model's efficacy, involving one breast cancer patient and her primary caregiver from W University Hospital. The patient had completed reconstructive surgery and chemotherapy and was undergoing radiotherapy. The model included standard treatments alongside psychological counseling, aromatherapy, axillary rehabilitation exercise, make-up program, art therapy, laughter therapy, horticultural therapy, and yoga programs, and meditation programs delivered over eight weeks. Quantitative and qualitative data were collected through surveys, psychological tests, and feedback assessments. Results : The integrative medical service model demonstrated notable improvements in the quality of life for both breast cancer patients and their caregivers. Participants reported enhanced emotional well-being, reduced stress levels, and improved coping mechanisms throughout the treatment journey. Qualitative feedback highlighted the positive impact of holistic interventions in alleviating psychological distress and fostering resilience. Quantitative data corroborated these findings, showing statistically significant improvements in various psychosocial parameters assessed. Conclusions : Our findings underscore the benefits of integrative medical service model with standard medical treatments in the care of breast cancer patients and their caregivers. The holistic approach not only addresses physical symptoms but also enhances overall well-being and quality of life. However, the implementation of such models faces challenges within the South Korean healthcare system, including fragmented service networks and financial constraints. Addressing these structural barriers is crucial for the widespread adoption and sustainability of integrative care models in oncology practice. Future research should focus on larger-scale studies to further validate these findings and inform policy decisions aimed at optimizing cancer care delivery.

Fruit Characteristics of the Secondary Bearing Shoots of Blueberry 'Scintilla' Grown in a Heated Greenhouse (가온 하우스 재배 블루베리 '신틸라'에 있어서 2차 결과지의 과실 특성)

  • Mi Geon Cheon;Kyung Mi Park;Sang Woo Choi;Seong-Tae Choi;Hye Suk Yoon;Weong Gwang Kim;Jin Gook Kim
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.336-341
    • /
    • 2023
  • This study examines the characteristics of berries from secondary bearing shoots of 'Scintilla' southern highbush blueberry, grown hydroponically in the Jinju, Gimhae, and Uiryeong regions of Gyeongnam Province. Typically, 'Scintilla' forms flower buds at the tips of regular bearing shoots during the previous season, yielding berries in the current season. However, under heated cultivation, we observed a proliferation of secondary bearing shoots that produce berries in the same growing season. Flowering and harvesting on secondary bearing shoots were delayed by 52 and 36 days, respectively, compared to regular bearing shoots. However, these shoots exhibited a 54% increase in diameter and a 10% increase in length. We found no significant difference in berry size and soluble solid content between the two types of shoots. Notably, berries from the secondary bearing shoots had higher potassium and lower calcium and magnesium concentrations. We conclude that berries from secondary bearing shoots could be marketable, provided the bushes are healthy. These findings provide valuable insights for optimizing cultural practices to improve the yield and quality of blueberries under specific environmental conditions.

Bending analysis of nano-Fe2O3 reinforced concrete slabs exposed to temperature fields and supported by viscoelastic foundation

  • Zouaoui R. Harrat;Mohammed Chatbi;Baghdad Krour;Sofiane Amziane;Mohamed Bachir Bouiadjra;Marijana Hadzima-Nyarko;Dorin Radu;Ercan Isik
    • Advances in concrete construction
    • /
    • v.17 no.2
    • /
    • pp.111-126
    • /
    • 2024
  • During the clinkering stages of cement production, the chemical composition of fine raw materials such as limestone and clay, which include iron oxide (Fe2O3), silicon dioxide (SiO2) and aluminum oxide (Al2O3), significantly influences the quality of the final product. Specifically, the chemical interaction of Fe2O3 with CaO, SiO2 and Al2O3 during clinkerisation plays a key role in determining the chemical reactivity and overall quality of the final cement, shaping the properties of the concrete produced. As an extension, this study aims to investigate the physical effects of incorporating nanosized Fe2O3 particles as fillers in concrete matrices, and their impact on concrete structures, namely slabs. To accurately model the reinforced concrete (RC) slabs, a refined trigonometric shear deformation theory (RTSDT) is used. Additionally, the stochastic Eshelby's homogenization approach is employed to determine the thermoelastic properties of nano-Fe2O3 infused concrete slabs. To ensure comprehensive coverage in the study, the RC slabs undergo various mechanical loads and are exposed to temperature fields to assess their thermo-mechanical performance. Furthermore, the slabs are assumed to rest on a three-parameter viscoelastic foundation, comprising the Winkler elastic springs, Pasternak shear layer and a damping parameter. The equilibrium governing equations of the system are derived using the principle of virtual work and subsequently solved using Navier's technique. The findings indicate that while ferric oxide nanoparticles enhance the mechanical properties of concrete against mechanical loading, they have less favorable effects on its performance against thermal exposure. However, the viscoelastic foundation contributes to mitigating these effects, improving the concrete's overall performance in both scenarios. These results highlight the trade-offs between mechanical and thermal performance when using Fe2O3 nanoparticles in concrete and underscore the importance of optimizing nanoparticle content and loading conditions to improve the structural performance of concrete structures.

Enhanced HCHO Sensing Performance of NiO-decorated In2O3 Nanorods (NiO가 장식된 In2O3 Nanorods의 HCHO 감지 특성 향상)

  • Zion Park;Younghun Kim;Youjune Jang;Yujin Kim;Soohyun Han;Jae Han Chung;Young-Seok Sim
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.5
    • /
    • pp.310-317
    • /
    • 2024
  • Formaldehyde (HCHO) is a major primary indoor air pollutant with various adverse effects on the human body, includingsuch as sick building syndrome, lung cancer, and nasal cancer. Therefore, gas sensors for effective HCHO detection detecting HCHO are crucial for maintaining a healthy indoor environments, and research is being conducted to develop high-performance sensors for this purpose. AnOne of the effective methods for enhancing the to enhance sensing properties is involves modifying the p-n heterojunction structure, which improves sensing through via electronic sensitization based on the expanded depletion region and chemical sensitization that dissociates specific gases. In this studyHerein, weWe fabricated NiO-decorated In2O3 NRs using an e-beam evaporator based on the glancing angle deposition technique by optimizing the NiO thickness (0, 1, 2, and 3 nm). When exposed to 50 ppm HCHO, NiO-decorated In2O3 NRs showed a 3.91%-fold enhancement in the gas response (Ra/Rg-1= 23.9) and a 41.47% faster response time (40.7 s) than-compared to bare In2O3 NRs with an extremely low theoretical detection limit of ≈approximately 9.3 ppb.

Strategy for Enhancing Flood Control Capacity of Seomjin River Basin Using Both Structural and Non-structural Measures (구조적 및 비구조적 대책을 결합한 섬진강유역 홍수조절능력 제고 방안)

  • Lee, Dong Yeol;Baek, Kyong Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.683-694
    • /
    • 2024
  • Flood control capacity enhancement measures in watersheds can be broadly categorized into structural and non-structural approaches. In this study, we propose the improvement of the flood control capacity in the Seomjin River basin through non-structural measures by optimizing the operation of the Seomjin River Dam, specifically by introducing a flexible flood season restricted water level (FSRWL). The flexible operation of FSRWL involves setting lower restricted water levels at the beginning of the flood season to increase flood control capacity and gradually raising them as the season progresses to manage flood control more effectively. As a structural measure, we examined the installation of riverside storage areas, a representative technique of nature-based solutions (NbS). Using the 2020 flood event as a case study, we analyzed the flood level reduction effects of implementing structural and non-structural measures both separately and simultaneously to identify the most effective and economical approach. The results indicate that the optimal flood prevention strategy for the main stream of the Seomjin River during the 2020 flood event involves operating the Seomjin River Dam FSRWL at EL. 190 m during the mid-flood season as a non-structural measure and installing a riverside storage area downstream of Godalgyo Bridge in Daepyeong-ri, Gokseong-gun as a structural measure.