• 제목/요약/키워드: Optimizer

검색결과 308건 처리시간 0.02초

COVID-19 폐 CT 이미지 인식 (COVID-19 Lung CT Image Recognition)

  • 수징제;김강철
    • 한국전자통신학회논문지
    • /
    • 제17권3호
    • /
    • pp.529-536
    • /
    • 2022
  • 지난 2년 동안 중증급성호흡기증후군 코로나바이러스-2(SARS-CoV-2)는 점점 더 많은 사람들에게 영향을 미치고 있다. 본 논문에서는 COVID-19 폐 CT 이미지를 분할하고 분류하기 위해서 서브코딩블록(SCB), 확장공간파라미드풀링(ASSP)와 어텐션게이트(AG)로 구성된 혼합 모드 특징 추출 방식의 새로운 U-Net 컨볼루션 신경망을 제안한다. 그리고 제안된 모델과 비교하기 위하여 FCN, U-Net, U-Net-SCB 모델을 설계한다. 제안된 U-Net-MMFE 는 COVID-19 CT 스캔 디지털 이미지 데이터에 대하여 atrous rate가 12이고, Adam 최적화 알고리즘을 사용할 때 다른 분할 모델에 비하여 94.79%의 우수한 주사위 분할 점수를 얻었다.

딥러닝을 이용한 원격탐사 영상분석 연구동향 (Research Trend of the Remote Sensing Image Analysis Using Deep Learning)

  • 김형우;김민호;이양원
    • 대한원격탐사학회지
    • /
    • 제38권5_3호
    • /
    • pp.819-834
    • /
    • 2022
  • 인공지능 기법들은 특히 영상분류(image classification), 객체탐지(object detection), 영상분할(image segmentation)에 효과적으로 사용되고 있다. 특히, 딥러닝(deep learning)은 최근 컴퓨팅 파워의 증대와 함께 깊고 두터운 네트워크 구성이 가능해지고 보다 효율적인 활성함수(activation function)와 옵티마이저(optimizer)를 활용한 특징맵(feature map)의 생성을 통해 상당히 높은 정확도를 도출할 수 있다. 본고에서는 최근 다양한 원격탐사 분야에서 활용성이 확대되고 있는 딥러닝 영상인식 기법인 Convolutional Neural Network (CNN) 기반 모델 및 Transformer 기반 모델에 대한 기술동향 및 사례연구를 검토하고, 우리나라에서 이들 기법의 활용방안 및 발전방향 등을 제시하고자 한다. 향후 원격탐사 기반의 재난 상황 대응을 위해서는 위성영상의 적시성 확보와 실시간 딥러닝 처리, 그리고 위성, 드론 및 Closed-circuit Television (CCTV) 영상이 함께 활용되는 영상 빅데이터 플랫폼도 개발되어야 할 것이다.

딥러닝 기반 직원 안전용 헬멧과 마스크 분류 (Helmet and Mask Classification for Personnel Safety Using a Deep Learning)

  • ;김강철
    • 한국전자통신학회논문지
    • /
    • 제17권3호
    • /
    • pp.473-482
    • /
    • 2022
  • 코로나 시대에서 감염의 위험을 줄이기 위하여 반드시 마스크를 착용하여야 하며, 건축 공사장과 같은 위험한 작업 환경에서 일하는 직원의 안전을 위하여 헬맷을 쓰는 것은 필수불가결하다. 본 논문에서는 헬멧과 마스크의 착용 여부를 분류하는 효과적인 딥러닝 모델 HelmetMask-Net를 제안한다. HelmetMask-Net은 CNN 기반으로 설계되며, 전처리, 컨벌류션 계층, 맥스풀링 계층과 4 가지 출력이 있는 완전결합 계층으로 구성되며, 헬멧, 마스크, 헬멧과 마스크, 헬멧과 마스크을 착용하지 않은 4 가지 경우를 구분한다. 정확도, 최적화, 초월 변수의 수를 고려한 실험으로 2 컨볼루션 계층과 AdaGrad 최적화를 가진 구조가 선정되었다. 모의 실험 결과 99%의 정확도를 보여 주었고, 기존의 모델에 비하여 성능이 우수함을 확인하였다. 제안된 분류기는 코비드 19 시대에 직원의 안전을 향상시킬 수 있을 것이다.

RSM-based MOALO optimization and cutting inserts evaluation in dry turning of AISI 4140 steel

  • Hamadi, Billel;Yallese, Mohamed Athmane;Boulanouar, Lakhdar;Nouioua, Mourad;Hammoudi, Abderazek
    • Structural Engineering and Mechanics
    • /
    • 제84권1호
    • /
    • pp.17-33
    • /
    • 2022
  • An experimental study is carried out to investigate the performance of the cutting tool regarding the insert wear, surface roughness, cutting forces, cutting power and material removal rate of three coated carbides GC2015 (TiCN-Al2O3-TiN), GC4215 (Al2O3-Ti(C,N)) and GC1015 (TiN) during the dry turning of AISI4140 steel. For this purpose, a Taguchi design (L9) was adopted for the planning of the experiments, the effects of cutting parameters on the surface roughness (Ra), tangential cutting force (Fz), the cutting power (Pc) and the material removal rate (MRR) were studied using analysis of variance (ANOVA), the response surface methodology (RSM) was used for mathematical modeling, with which linear mathematical models were developed for forecasting of Ra, Fz, Pc and MRR as a function of cutting parameters (Vc, f, and ap). Then, Multi-Objective Ant Lion Optimizer (MOALO) has been implemented for multi-objective optimization which allows manufacturers to enhance the production performances of the machined parts. Furthermore, in order to characterize and quantify the flank wear of the tested tools, some machining experiments were performed for 5 minutes of turning under a depth of 0.5 mm, a feed rate of 0.08 mm/rev, and a cutting speed of 350 m/min. The wear results led to a ratio (VB-GC4215/VB-GC2015) of 2.03 and (VB-GC1015/VB-GC2015) of 4.43, thus demonstrating the efficiency of the cutting insert GC2015. Moreover, SEM analysis shows the main wear mechanisms represented by abrasion, adhesion and chipping.

유전자 알고리즘 PSGA를 이용한 복합재료 헬리콥터 블레이드 최적 구조설계 (Optimal Structural Design of Composite Helicopter Blades using a Genetic Algorithm-based Optimizer PSGA)

  • 장세훈;정성남
    • Composites Research
    • /
    • 제35권5호
    • /
    • pp.340-346
    • /
    • 2022
  • 본 연구에서는 복합재료 블레이드에 대한 최적 구조설계 프레임워크를 구성하고, 이를 헬리콥터 블레이드에 적용하여 최적 구조설계를 수행하였다. 단면 형상의 경우 C형 및 D형 스파를 선택할 수 있게 구성하였으며, 최적설계 프레임워크는 유전자 알고리즘과 입자 군집 최적화 알고리즘을 결합한 PSGA를 활용하였다. 단면의 기하학적 모델링은 B-spline을 이용하여 구현하였고, 유한요소 모델 생성 프로그램 Gmsh를 통해 단면 유한요소모델을 만든 뒤 단면 해석 프로그램인 Ksec2D를 사용하여 구조해석 결과를 도출하였다. 본 최적설계 프레임워크를 HART II 블레이드에 적용하여 최적 구조설계를 수행한 결과, C형 스파 모델은 기준 형상 대비 무게 7.39%, D형 스파 모델은 6.65% 감소하였으며, 이때 전단중심은 모두 공력중심과 인접한(5% 이내) 결과를 도출하였다. 본 연구를 통해 일반적인 헬리콥터 블레이드의 단면에 적용할 수 있는 최적 구조설계 프레임워크의 유효성을 확인하였다.

An optimized ANFIS model for predicting pile pullout resistance

  • Yuwei Zhao;Mesut Gor;Daria K. Voronkova;Hamed Gholizadeh Touchaei;Hossein Moayedi;Binh Nguyen Le
    • Steel and Composite Structures
    • /
    • 제48권2호
    • /
    • pp.179-190
    • /
    • 2023
  • Many recent attempts have sought accurate prediction of pile pullout resistance (Pul) using classical machine learning models. This study offers an improved methodology for this objective. Adaptive neuro-fuzzy inference system (ANFIS), as a popular predictor, is trained by a capable metaheuristic strategy, namely equilibrium optimizer (EO) to predict the Pul. The used data is collected from laboratory investigations in previous literature. First, two optimal configurations of EO-ANFIS are selected after sensitivity analysis. They are next evaluated and compared with classical ANFIS and two neural-based models using well-accepted accuracy indicators. The results of all five models were in good agreement with laboratory Puls (all correlations > 0.99). However, it was shown that both EO-ANFISs not only outperform neural benchmarks but also enjoy a higher accuracy compared to the classical version. Therefore, utilizing the EO is recommended for optimizing this predictive tool. Furthermore, a comparison between the selected EO-ANFISs, where one employs a larger population, revealed that the model with the population size of 75 is more efficient than 300. In this relation, root mean square error and the optimization time for the EO-ANFIS (75) were 19.6272 and 1715.8 seconds, respectively, while these values were 23.4038 and 9298.7 seconds for EO-ANFIS (300).

폐 CT 영상에서의 노이즈 감소를 위한 U-net 딥러닝 모델의 다양한 학습 파라미터 적용에 따른 성능 평가 (Performance Evaluation of U-net Deep Learning Model for Noise Reduction according to Various Hyper Parameters in Lung CT Images)

  • 이민관;박찬록
    • 한국방사선학회논문지
    • /
    • 제17권5호
    • /
    • pp.709-715
    • /
    • 2023
  • 본 연구의 목적은, U-net 딥러닝 모델을 이용하여 CT 영상에서의 노이즈 감소 효과를 다양한 하이퍼 파라미터를 적용하여 평가하였다. 노이즈가 포함된 입력 영상 생성을 위하여 Gaussian 노이즈를 적용하였고, 총 1300장의 CT 영상에서 train, validation, test 셋의 비율을 8:1:1로 유지하여 U-net 모델을 적용하여 학습하였다. 연구에서 적용된 하이퍼파라미터는 최적화 함수 Adagrad, Adam, AdamW와 학습횟수 10회, 50회, 100회와 학습률 0.01, 0.001, 0.0001을 적용하였으며, 최대 신호 대 잡음비와 영상의 변동계수 값을 계산하여 정량적으로 분석하였다. 결과적으로 U-net 딥러닝 모델을 적용한 노이즈 감소는 영상의 질을 향상시킬 수 있으며 노이즈 감소 측면에서 유용성을 입증하였다.

Application of the optimal fuzzy-based system on bearing capacity of concrete pile

  • Kun Zhang;Yonghua Zhang;Behnaz Razzaghzadeh
    • Steel and Composite Structures
    • /
    • 제51권1호
    • /
    • pp.25-41
    • /
    • 2024
  • The measurement of pile bearing capacity is crucial for the design of pile foundations, where in-situ tests could be costly and time needed. The primary objective of this research was to investigate the potential use of fuzzy-based techniques to anticipate the maximum weight that concrete driven piles might bear. Despite the existence of several suggested designs, there is a scarcity of specialized studies on the exploration of adaptive neuro-fuzzy inference systems (ANFIS) for the estimation of pile bearing capacity. This paper presents the introduction and validation of a novel technique that integrates the fire hawk optimizer (FHO) and equilibrium optimizer (EO) with the ANFIS, referred to as ANFISFHO and ANFISEO, respectively. A comprehensive compilation of 472 static load test results for driven piles was located within the database. The recommended framework was built, validated, and tested using the training set (70%), validation set (15%), and testing set (15%) of the dataset, accordingly. Moreover, the sensitivity analysis is performed in order to determine the impact of each input on the output. The results show that ANFISFHO and ANFISEO both have amazing potential for precisely calculating pile bearing capacity. The R2 values obtained for ANFISFHO were 0.9817, 0.9753, and 0.9823 for the training, validating, and testing phases. The findings of the examination of uncertainty showed that the ANFISFHO system had less uncertainty than the ANFISEO model. The research found that the ANFISFHO model provides a more satisfactory estimation of the bearing capacity of concrete driven piles when considering various performance evaluations and comparing it with existing literature.

Creation of regression analysis for estimation of carbon fiber reinforced polymer-steel bond strength

  • Xiaomei Sun;Xiaolei Dong;Weiling Teng;Lili Wang;Ebrahim Hassankhani
    • Steel and Composite Structures
    • /
    • 제51권5호
    • /
    • pp.509-527
    • /
    • 2024
  • Bonding carbon fiber-reinforced polymer (CFRP) laminates have been extensively employed in the restoration of steel constructions. In addition to the mechanical properties of the CFRP, the bond strength (PU) between the CFRP and steel is often important in the eventual strengthened performance. Nonetheless, the bond behavior of the CFRP-steel (CS) interface is exceedingly complicated, with multiple failure causes, giving the PU challenging to forecast, and the CFRP-enhanced steel structure is unsteady. In just this case, appropriate methods were established by hybridized Random Forests (RF) and support vector regression (SVR) approaches on assembled CS single-shear experiment data to foresee the PU of CS, in which a recently established optimization algorithm named Aquila optimizer (AO) was used to tune the RF and SVR hyperparameters. In summary, the practical novelty of the article lies in its development of a reliable and efficient method for predicting bond strength at the CS interface, which has significant implications for structural rehabilitation, design optimization, risk mitigation, cost savings, and decision support in engineering practice. Moreover, the Fourier Amplitude Sensitivity Test was performed to depict each parameter's impact on the target. The order of parameter importance was tc> Lc > EA > tA > Ec > bc > fc > fA from largest to smallest by 0.9345 > 0.8562 > 0.79354 > 0.7289 > 0.6531 > 0.5718 > 0.4307 > 0.3657. In three training, testing, and all data phases, the superiority of AO - RF with respect to AO - SVR and MARS was obvious. In the training stage, the values of R2 and VAF were slightly similar with a tiny superiority of AO - RF compared to AO - SVR with R2 equal to 0.9977 and VAF equal to 99.772, but large differences with results of MARS.

An improved particle swarm optimizer for steel grillage systems

  • Erdal, Ferhat;Dogan, Erkan;Saka, Mehmet Polat
    • Structural Engineering and Mechanics
    • /
    • 제47권4호
    • /
    • pp.513-530
    • /
    • 2013
  • In this paper, an improved version of particle swarm optimization based optimum design algorithm (IPSO) is presented for the steel grillage systems. The optimum design problem is formulated considering the provisions of American Institute of Steel Construction concerning Load and Resistance Factor Design. The optimum design algorithm selects the appropriate W-sections for the beams of the grillage system such that the design constraints are satisfied and the grillage weight is the minimum. When an improved version of the technique is extended to be implemented, the related results and convergence performance prove to be better than the simple particle swarm optimization algorithm and some other metaheuristic optimization techniques. The efficiency of different inertia weight parameters of the proposed algorithm is also numerically investigated considering a number of numerical grillage system examples.