• 제목/요약/키워드: Optimized welding condition

검색결과 26건 처리시간 0.024초

용가 와이어를 적용한 알루미늄 레이저 용접에서 공정 자동화를 위한 유전 알고리즘을 이용한 공정변수 최적화 (Optimization of Process Parameters Using a Genetic Algorithm for Process Automation in Aluminum Laser Welding with Filler Wire)

  • 박영환
    • Journal of Welding and Joining
    • /
    • 제24권5호
    • /
    • pp.67-73
    • /
    • 2006
  • Laser welding is suitable for welding to the aluminum alloy sheet. In order to apply the aluminum laser welding to production line, parameters should be optimized. In this study, the optimal welding condition was searched through the genetic algorithm in laser welding of AA5182 sheet with AA5356 filler wire. Second-order polynomial regression model to estimate the tensile strength model was developed using the laser power, welding speed and wire feed rate. Fitness function for showing the performance index was defined using the tensile strength, wire feed rate and welding speed which represent the weldability, product cost and productivity, respectively. The genetic algorithm searched the optimal welding condition that the wire feed rate was 2.7 m/min, the laser power was 4 kW and the welding speed was 7.95 m/min. At this welding condition, fitness function value was 137.1 and the estimated tensile strength was 282.2 $N/mm^2$.

선체구조용 A급 강재의 하이브리드 용접에 대한 열 및 역학적 특성에 관한 연구 (A Study on the Thermal and Mechanical Characteristic of Hybrid Welded Ship Structure A-grade Steel)

  • 오종인;김영표;박호경;방한서
    • 한국해양공학회지
    • /
    • 제21권1호
    • /
    • pp.64-68
    • /
    • 2007
  • Recently, there has been considerable research in the field of application of Laser-Arc hybrid welding for superstructures, such as ship-structures, transport vehicles etc. However, the study on heat distribution and welding residual stress of hybrid weld by numerical simulation leaves much to be desired. Therefore, in this study, an optimized welding condition and numerical simulation for hybrid welding, using previous numerical analysis to calculate the heat source for hybrid welding, has been analyzed. For this purpose, fundamental welding phenomena of the hybrid process, using Laser and, is investigated. In order to calculate temperature and residual stress distribution in hybrid welds, a finite element heat source model is developed on the basis of experimental results and characteristics of temperature. Residual stress distribution in hybrid welds are understood from the result of simulation, and compared with the experimental values.

조선용 A-grade 강재에 대한 하이브리드 및 레이저 용접부의 용접성 비교 (The Comparison of Weldability in Hybrid & Laser Welded Ship Structure A-grade Steel)

  • 오종인;박호경;정은영;;방한서
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.193-196
    • /
    • 2006
  • Recently many research are going on in the field of application of Laser and Laser-Arc hybrid welding for superstructures such as ship-structures, transport vehicles etc. Therefore in this study an optimized welding condition and numerical simulation for hybrid welding by using previous numerical analysis which is used to calculate the heat source for Laser and Laser-Arc hybrid welding has been analyzed. For this purpose, fundamental welding phenomena of hybrid process(Laser+MIG) are determined based on the experiments. In order to calculate temperature and residual stress distribution in Laser and Laser-Arc hybrid welds, finite element heat source model is developed on the basis of experiment results and characteristics of temperature and residual stress distribution in Laser and Laser-Arc hybrid welds are understood from the result of simulation and found comparable to the experimental values.

  • PDF

원격 스캐너를 이용한 알루미늄 레이저 용접에 대한 생산 공정 최적화 설계 (The Design of Manufacturing Process Optimization for Aluminum Laser Welding using Remote Scanner)

  • 김동윤;박영환
    • Journal of Welding and Joining
    • /
    • 제29권6호
    • /
    • pp.82-87
    • /
    • 2011
  • In this study, we conducted laser welding by using remote scanner that is 5J32 aluminum alloy to observe the mechanical properties and optimize welding process parameters. As the control factors, laser incident angle, laser power and welding speed were set and as the result of weldablility, tensile shear tests were performed. ANOVA (Analysis of Variation) was also carried out to identify the influence of process variables on tensile shear strength. Strength estimation models were suggested using regression alnalysis and 2nd order polynomial model had the best estimation performance. In addition optimal welding condition was determined in terms with wedalility and productivity using objective function and fitness function. Final optimized welding condition was laser power was 4 kW, and welding speed was 4.6 m/min.

박판 강재의 고속 심 용접성에 미치는 Sn 도금의 영향 (Effect of Tin Coating on the High Speed Seam Weldability of Thn Gage Sheet Steels)

  • 김기철;이목영
    • Journal of Welding and Joining
    • /
    • 제16권5호
    • /
    • pp.86-92
    • /
    • 1998
  • High speed wire seam weldability of tin coated thin gage sheet steels was investigated. Thickness and coating weight ranges of the test materials were 0.21~0.35mm and 1.1/1.1~2.8/11.2g/$m^2$, respectively. Test results indicated that the surface roughness value, Rz decreased as increasing the coating weight. The Rz was thought to be one of the important factors to influence the optimum welding condition range, $\triangle$Q. The $\triangle$Q showed close relationship with welding conditions such as welding pressure and travel speed. Higher welding pressure widened the $\triangle$Q while higher travel speed reduced the $\triangle$Q value. Results also demonstrated that tin coating weight should be optimized based on the weldability or the serviceability after welding. At th HAZ of sheet materials with thinner coating layer, tin depleted zone was produced since molten film of the coating material on the base metal agglomerated by the surface tension, which could result in reducing the corrosion resistance of the HAZ in the service environment.

  • PDF

레이저 위빙을 이용한 Al 6k21-T4 합금의 용접 강도 향상 (A Study to Improve Weld Strength of Al 6k21-T4 Alloy by using Laser Weaving Method)

  • 김병훈;강남현;박용호;안영남;김철희;김정한
    • Journal of Welding and Joining
    • /
    • 제27권4호
    • /
    • pp.49-53
    • /
    • 2009
  • For Al 6k21-T4 alloy, linear laser welding produced the lower shear-tensile strength than the base metal. This study improved the shear-tensile strength by using the weaving laser at the optimized welding condition, i.e., 2mm weaving width and 25Hz frequency. The large weaving width increased the weld width, therefore improving the joint strength. For the specimen of low strength, the porosity was distributed continuously along the intersection between the plates and fusion line. However, for the optimized welding condition, large oval-shaped porosities were located only in the advancing track of the concave part. Regardless of the welding condition, solidification cracking was initiated at the intersection and propagated through small porosities in the weld part. furthermore, the concave part had more significant porosity in the weld and HAZ, respectively than the convex part. The continuity of porosities played a key role to determine the strength. And, the weaving width was an important parameter to control the strength.

외경 36mm 강관의 관대관 마찰용접 특성과 공정 변수 최적화 (Mechanical Property and Process Variables Optimization of Tube-to-Tube Friction Welding for Steel Pipe with 36 mm External Diameter)

  • 공유식;박영환
    • 동력기계공학회지
    • /
    • 제18권2호
    • /
    • pp.50-56
    • /
    • 2014
  • Friction welding is a very useful joining process to weld metals which have axially symmetric cross section. In this paper, for the friction welding with tube-to-tube shape, the feasibility of industry application was determined using analyzing mechanical properties of weld and optimized welding variables was suggested. In order to accomplish this object, rotating speed, friction heating pressure, and friction heating time were selected as the major process variables and the experiment was performed in three levels of each parameter. Weld characteristic was investigated in terms of weld shape and metal loss, and 7mm of metal loss was regarded as the optimal metal loss. By tensile test, tensile strength and yielding strength was measured and fracture was occurred at base metal. In order to optimize the welding condition, fitness function was defined with respect to metal loss and yielding strength and the fitness values for each welding condition could be calculated in experimental range. Consequently, we set the optimal welding condition as the point which had maximum value of fitness function. As the result of this paper the optimal welding variables could be suggested as rotating speed was 1300 rpm, friction heating pressure was 15 MPa, and friction heating time was 10 sec.

GMA 용접공정을 이용한 오픈갭 수평고정관 초층 용접의 실험적 연구 (An Experimental Study on Root-pass Welding of Open Gap by GMA Welding Process in Pipeline)

  • 김지선;김일수;박창언;나현호;이지혜;정성명
    • Journal of Welding and Joining
    • /
    • 제29권3호
    • /
    • pp.64-69
    • /
    • 2011
  • Since welding process for most pipelines with large diameter has been carried out by the manual process, automation of the welding process is necessary for the sake of consistent weld quality and improvement in productivity. Therefore the development of the optimized algorithm to decide the welding condition is an effective technique to prove the feasibility of interface standards and intelligent control technology to increase productivity and reduce the cost of system integration. In this study, the pipe welding experiment has been carried out using plused GMA welding process to select optimal welding condition. And necessary information in root-pass welding has been obtained by applying in the pipeline using the selected welding conditions through the welding experiment.

경량 차체용 고장력 강판의 Spot 용접과 피로설계에 관한 연구 (A Study on the Spot Welding and Fatigue Design of High Strength Steel Sheets for Light Weight Vehicle Body)

  • 허정범;배동호;윤치상;권순용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1115-1120
    • /
    • 2003
  • The recent tendency in the automobile industries is toward light weighting vehicle body to improve the problems by environmental pollution as well as improving fuel cost. The effective way to reduce the weight of vehicle body seems to be application of new materials for body structure and such trend is remarkable. Among the various materials for vehicle body, stainless steel sheet (for example, 301L and 304L), TRIP steel and cold rolled steel sheets are under the interests. However, in order to guarantee reliability of new material and to establish the long life design criteria of body structure, it is important and require condition to assess spot weldability of them and fatigue strength of spot welded lap joints which were fabricated under optimized spot welding condition. And, recently, a new issue in the design of the spot welded structure is to predict economically fatigue design criterion without additional fatigue tests. In general, for fatigue design of the spot-welded thin sheet structure, additional fatigue tests according to the welding condition, material, joint type, and fatigue loading condition are generally required. This indicates that much cost and time for it should be consumed. Therefore, in this paper, the maximum stresses at nugget edge of spot weld were calculated through nonlinear finite element analysis first. And next, obtained the ${\Delta}P-N_{f}$ relation through the actual fatigue tests on spot welded lap joints of similar and dissimilar high strength steel sheets. And then, the ${\Delta}P-N_{f}$ relation was rearranged in the ${\Delta}{\sigma}-N_{f}$ relation. From this ${\Delta}{\sigma}-N_{f}$ relation, developed the fatigue design technology for spot welded lap joints of them welded using the optimized welding conditions.

  • PDF

자동차 자동변속기 부품의 레이저 용접 적용 (Laser Welding of Automotive Transmission Components)

  • 안영남;김철희
    • Journal of Welding and Joining
    • /
    • 제29권6호
    • /
    • pp.45-48
    • /
    • 2011
  • In this research, laser welding of automotive transmission components was investigated to replace electron beam welding which is normally conducted under vacuum condition. Fiber laser welding was applied to the automotive transmission components - hub clutch and annulus gear. In the component welding, the laser welding parameters were optimized to eliminate spatters and the end crater. By applying laser welding to the transmission parts, the process time could be reduced up to 70% compared with the current electron beam welding process.