• Title/Summary/Keyword: Optimized model

Search Result 2,432, Processing Time 0.026 seconds

Assessing Relative Importance of Laver Attributes for Infants Using Conjoint Analysis (컨조인트 분석을 이용한 영유아 김 선택 속성의 상대적 중요도 분석)

  • Lee, Ho-Jin;Lee, Min-A;Park, Hye-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.6
    • /
    • pp.894-902
    • /
    • 2016
  • The purpose of this study was to analyze the attributes considered as important by parents in the selection of laver for infants through conjoint analysis techniques. A total of 917 questionnaires were distributed in January 2016, of which 211 were completed (23.0%). Statistical data analyses were performed using SPSS/Win 21.0 for descriptive statistics and conjoint analysis. The conjoint design was applied to evaluate the hypothetical laver for infants. According to the analysis of attributes and levels of laver for infants, the relative importance of each attribute was follows: seasoning (26.55%), flavor (19.33%), texture (18.75%), oil (15.15%), size (10.61%), and certification (9.61%). The results of the conjoint analysis indicate that parents raising infants preferred laver with the characteristics of non-seasoning, general flavor, softness, half-size, organic certification, and perilla oil. The most preferred laver for infants gained a 53.7% potential market share from choice simulation compared with laver being sold. Using utility and relative importance, the laver market for infants was classified into two segments. As a result of market segmentation, parents of cluster 1 preferred the laver model being sold (soy seasoning) while parents of cluster 2 preferred the optimized laver model (non-seasoning).

Dynamic Characteristic Analysis Procedure of Helicopter-mounted Electronic Equipment (헬기 탑재용 전자장비의 동특성 분석 절차)

  • Lee, Jong-Hak;Kwon, Byunghyun;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.8
    • /
    • pp.759-769
    • /
    • 2013
  • Electronic equipment has been applied to virtually every area associated with commercial, industrial, and military applications. Specifically, electronics have been incorporated into avionics components installed in aircraft. This equipment is exposed to dynamic loads such as vibration, shock, and acceleration. Especially, avionics components installed in a helicopter are subjected to simultaneous sine and random base excitations. These are denoted as sine on random vibrations according to MIL-STD-810F, Method 514.5. In the past, isolators have been applied to avionics components to reduce vibration and shock. However, an isolator applied to an avionics component installed in a helicopter can amplify the vibration magnitude, and damage the chassis, circuit card assembly, and the isolator itself via resonance at low-frequency sinusoidal vibrations. The objective of this study is to investigate the dynamic characteristics of an avionics component installed in a helicopter and the structural dynamic modification of its tray plate without an isolator using both a finite element analysis and experiments. The structure is optimized by dynamic loads that are selected by comparing the vibration, shock, and acceleration loads using vibration and shock response spectra. A finite element model(FEM) was constructed using a simplified geometry and valid element types that reflect the dynamic characteristics. The FEM was verified by an experimental modal analysis. Design parameters were extracted and selected to modify the structural dynamics using topology optimization, and design of experiments(DOE). A prototype of a modified model was constructed and its feasibility was evaluated using an FEM and a performance test.

Impact of Sulfur Dioxide Impurity on Process Design of $CO_2$ Offshore Geological Storage: Evaluation of Physical Property Models and Optimization of Binary Parameter (이산화황 불순물이 이산화탄소 해양 지중저장 공정설계에 미치는 영향 평가: 상태량 모델의 비교 분석 및 이성분 매개변수 최적화)

  • Huh, Cheol;Kang, Seong-Gil;Cho, Mang-Ik
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.3
    • /
    • pp.187-197
    • /
    • 2010
  • Carbon dioxide Capture and Storage(CCS) is regarded as one of the most promising options to response climate change. CCS is a three-stage process consisting of the capture of carbon dioxide($CO_2$), the transport of $CO_2$ to a storage location, and the long term isolation of $CO_2$ from the atmosphere for the purpose of carbon emission mitigation. Up to now, process design for this $CO_2$ marine geological storage has been carried out mainly on pure $CO_2$. Unfortunately the $CO_2$ mixture captured from the power plants and steel making plants contains many impurities such as $N_2$, $O_2$, Ar, $H_2O$, $SO_2$, $H_2S$. A small amount of impurities can change the thermodynamic properties and then significantly affect the compression, purification, transport and injection processes. In order to design a reliable $CO_2$ marine geological storage system, it is necessary to analyze the impact of these impurities on the whole CCS process at initial design stage. The purpose of the present paper is to compare and analyse the relevant physical property models including BWRS, PR, PRBM, RKS and SRK equations of state, and NRTL-RK model which are crucial numerical process simulation tools. To evaluate the predictive accuracy of the equation of the state for $CO_2-SO_2$ mixture, we compared numerical calculation results with reference experimental data. In addition, optimum binary parameter to consider the interaction of $CO_2$ and $SO_2$ molecules was suggested based on the mean absolute percent error. In conclusion, we suggest the most reliable physical property model with optimized binary parameter in designing the $CO_2-SO_2$ mixture marine geological storage process.

Production Medium Optimization for Monascus Biomass Containing High Content of Monacolin-K by Using Soybean Flour Substrates (기능성 원료를 기질로 이용하는 Monacolin-K 고함유 모나스커스 균주의 생산배지 최적화)

  • Lee, Sun-Kyu;Chun, Gie-Taek;Jeong, Yong-Seob
    • KSBB Journal
    • /
    • v.23 no.6
    • /
    • pp.463-469
    • /
    • 2008
  • During the last decade, monacolin-K biosynthesized by fermentation of red yeast rice (Monascus strains) was proved to have an efficient cholesterol lowering capability, leading to rapid increase in the market demand for the functional red yeast rice. In this study, the production medium composition and components were optimized on a shake flask scale for monacolin-K production by Monascus pilosus (KCCM 60160). The effect of three different soybean flours on the monacolin-K production were studied in order to replace the nitrogen sources of basic production medium (yeast extract, malt extract and beef extract). Among the several experiments, the production medium with dietary soybean flour to replace a half of yeast extract was very good for monacolin-K production. Plackett-Burman experimental design was used to determine the key factors which are critical to produce the biological products in the fermentation. According to the result of Plackett-Burman experimental design, a second order response surface design was applied using yeast extract, beef extract and $(NH_4)_2SO_4$ as factors. Applying this model, the optimum concentration of the three variables was obtained. The maximum monacolin-K production (369.6 mg/L) predicted by model agrees well with the experimental value (418 mg/L) obtained from the experimental verification at the optimal medium. The yield of monacolin-K was increased by 67% as compared to that obtained with basic production medium in shake flasks.

Splenocyte-mediated immune enhancing activity of Sargassum horneri extracts (괭생이 모자반 추출물의 비장세포 면역활성 증강 효과)

  • Kim, Dong-Sub;Sung, Nak-Yun;Han, In-Jun;Lee, Byung-Soo;Park, Sang-Yun;Nho, Eun Young;Eom, Ji;Kim, Geon;Kim, Kyung-Ah
    • Journal of Nutrition and Health
    • /
    • v.52 no.6
    • /
    • pp.515-528
    • /
    • 2019
  • Purpose: This study examined the immunological activity and optimized the mixture conditions of Sargassum horneri (S. horneri) extracts in vitro and in vivo models. Methods: S. horneri was extracted using three different methods: hot water extraction (HWE), 50% ethanol extraction (EE), and supercritical fluid extraction (SFE). Splenocyte proliferation and cytokine production (Interleukin-2 and Interferon-γ) were measured using a WST-1 assay and enzyme-linked immunosorbent assay, respectively. The levels of nitric oxide and T cell activation production were measured using a Griess assay and flow cytometry, respectively. The natural killer (NK) cell activity was determined using an EZ-LDH kit. Results: Among the three different types of extracts, HWE showed the highest levels of splenocyte proliferation and cytokine production in vitro. In the animal model, three different types of extracts were administrated for 14 days (once/day) at 50 and 100 mg/kg body weight. HWE and SFE showed a high level of splenocyte proliferation and cytokine production in the with and without mitogen-treated groups, whereas EE administration did not induce the splenocyte activation. When RAW264.7 macrophage cells were treated with different mixtures (HWE with 5, 10, 15, 20% of SFE) to determine the optimal mixture ratio of HWE and SFE, the levels of nitric oxide and cytokine production increased strongly in the HWE with 5% and 10% of SFE containing group. In the animal model, HWE with 5% and 10% of SFE mixture administration increased the levels of splenocyte proliferation, cytokine production, and activated CD4+ cell population significantly, with the highest level observed in the HWE with 5% of SFE group. Moreover, the NK cell activity was increased significantly in the HWE with 5% of SFE mixture-treated group compared to the control group. Conclusion: The optimal mixture condition of S. horneri with immune-enhancing activity is the HWE with 5% of SFE mixture. These results confirmed that the extracts of S. horneri and its mixtures are potential candidate materials for immune enhancement.

Optimization for Ammonia Decomposition over Ruthenium Alumina Catalyst Coated on Metallic Monolith Using Response Surface Methodology (반응표면분석법을 이용한 루테늄 알루미나 메탈모노리스 코팅촉매의 암모니아 분해 최적화)

  • Choi, Jae Hyung;Lee, Sung-Chan;Lee, Junhyeok;Kim, Gyeong-Min;Lim, Dong-Ha
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.218-226
    • /
    • 2022
  • As a result of the recent social transformation towards a hydrogen economy and carbon-neutrality, the demands for hydrogen energy have been increasing rapidly worldwide. As such, eco-friendly hydrogen production technologies that do not produce carbon dioxide (CO2) emissions are being focused on. Among them, ammonia (NH3) is an economical hydrogen carrier that can easily produce hydrogen (H2). In this study, Ru/Al2O3 catalyst coated onmetallic monolith for hydrogen production from ammonia was prepared by a dip-coating method using a catalyst slurry mixture composed of Ru/Al2O3 catalyst, inorganic binder (alumina sol) and organic binder (methyl cellulose). At the optimized 1:1:0.1 weight ratio of catalyst/inorganic binder/organic binder, the amount of catalyst coated on the metallic monolith after one cycle coating was about 61.6 g L-1. The uniform thickness (about 42 ㎛) and crystal structure of the catalyst coated on the metallic monolith surface were confirmed through scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. Also, a numerical optimization regression equation for NH3 conversion according to the independent variables of reaction temperature (400-600 ℃) and gas hourly space velocity (1,000-5,000 h-1) was calculated by response surface methodology (RSM). This model indicated a determination coefficient (R2) of 0.991 and had statistically significant predictors. This regression model could contribute to the commercial process design of hydrogen production by ammonia decomposition.

A Study on Movement of the Free Face During Bench Blasting (전방 자유면의 암반 이동에 관한 연구)

  • Lee, Ki-Keun;Kim, Gab-Soo;Yang, Kuk-Jung;Kang, Dae-Woo;Hur, Won-Ho
    • Explosives and Blasting
    • /
    • v.30 no.2
    • /
    • pp.29-42
    • /
    • 2012
  • Variables influencing the free face movement due to rock blasting include the physical and mechanical properties, in particular the discontinuity characteristics, explosive type, charge weight, burden, blast-hole spacing, delay time between blast-holes or rows, stemming conditions. These variables also affects the blast vibration, air blast and size of fragmentation. For the design of surface blasting, the priority is given to the safety of nearby buildings. Therefore, blast vibration has to be controlled by analyzing the free face movement at the surface blasting sites and also blasting operation needs to be optimized to improve the fragmentation size. High-speed digital image analysis enables the analyses of the initial movement of free face of rock, stemming optimality, fragment trajectory, face movement direction and velocity as well as the optimal detonator initiation system. Even though The high-speed image analysis technique has been widely used in foreign countries, its applications can hardly be found in Korea. This thesis aims at carrying out a fundamental study for optimizing the blast design and evaluation using the high-speed digital image analysis. A series of experimentation were performed at two large surface blasting sites with the rock type of shale and granite, respectively. Emulsion and ANFO were the explosives used for the study. Based on the digital images analysis, displacement and velocity of the free face were scrutinized along with the analysis fragment size distribution. In addition, AUTODYN, 2-D FEM model, was applied to simulate detonation pressure, detonation velocity, response time for the initiation of the free face movement and face movement shape. The result show that regardless of the rock type, due to the displacement and the movement velocity have the maximum near the center of charged section the free face becomes curved like a bow. Compared with ANFO, the cases with Emulsion result in larger detonation pressure and velocity and faster reaction for the displacement initiation.

A Study on Characteristics of Lincomycin Degradation by Optimized TiO2/HAP/Ge Composite using Mixture Analysis (혼합물분석을 통해 최적화된 TiO2/HAP/Ge 촉매를 이용한 Lincomycin 제거특성 연구)

  • Kim, Dongwoo;Chang, Soonwoong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.1
    • /
    • pp.63-68
    • /
    • 2014
  • In this study, it was found that determined the photocatalytic degradation of antibiotics (lincomycin, LM) with various catalyst composite of titanium dioxide ($TiO_2$), hydroxyapatite (HAP) and germanium (Ge) under UV-A irradiation. At first, various type of complex catalysts were investigated to compare the enhanced photocatalytic potential. It was observed that in order to obtain the removal efficiencies were $TiO_2/HAP/Ge$ > $TiO_2/Ge$ > $TiO_2/HAP$. The composition of $TiO_2/HAP/Ge$ using a statistical approach based on mixture analysis design, one of response surface method was investigated. The independent variables of $TiO_2$ ($X_1$), HAP ($X_2$) and Ge ($X_3$) which consisted of 6 condition in each variables was set up to determine the effects on LM ($Y_1$) and TOC ($Y_2$) degradation. Regression analysis on analysis of variance (ANOVA) showed significant p-value (p < 0.05) and high coefficients for determination value ($R^2$ of $Y_1=99.28%$ and $R^2$ of $Y_2=98.91%$). Contour plot and response curve showed that the effects of $TiO_2/HAP/Ge$ composition for LM degradation under UV-A irradiation. And the estimated optimal composition for TOC removal ($Y_2$) were $X_1=0.6913$, $X_2=0.2313$ and $X_3=0.0756$ by coded value. By comparison with actual applications, the experimental results were found to be in good agreement with the model's predictions, with mean results for LM and TOC removal of 99.2% and 49.3%, respectively.

Preliminary Study on the Development of a Platform for the Optimization of Beach Stabilization Measures Against Beach Erosion III - Centering on the Effects of Random Waves Occurring During the Unit Observation Period, and Infra-Gravity Waves of Bound Mode, and Boundary Layer Streaming on the Sediment Transport (해역별 최적 해빈 안정화 공법 선정 Platform 개발을 위한 기초연구 III - 단위 관측 기간에 발생하는 불규칙 파랑과 구속모드의 외중력파, 경계층 Streaming이 횡단표사에 미치는 영향을 중심으로)

  • Chang, Pyong Sang;Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.434-449
    • /
    • 2019
  • In this study, we develop a new cross-shore sediment module which takes the effect of infra-gravity waves of bound mode, and boundary layer streaming on the sediment transport into account besides the well-known asymmetry and under-tow. In doing so, the effect of individual random waves occurring during the unit observation period of 1 hr on sediment transport is also fully taken into account. To demonstrate how the individual random waves would affect the sediment transport, we numerically simulate the non-linear shoaling process of random wavers over the beach of uniform slope. Numerical results show that with the consistent frequency Boussinesq Eq. the application of which is lately extended to surf zone, we could simulate the saw-tooth profile observed without exception over the surf zone, infra-gravity waves of bound mode, and boundary-layer streaming accurately enough. It is also shown that when yearly highest random waves are modeled by the equivalent nonlinear uniform waves, the maximum cross-shore transport rate well exceeds the one where the randomness is fully taken into account as much as three times. Besides, in order to optimize the free parameter K involved in the long-shore sediment module, we carry out the numerical simulation to trace the yearly shoreline change of Mang-Bang beach from 2017.4.26 to 2018.4.20 as well, and proceeds to optimize the K by comparing the traced shoreline change with the measured one. Numerical results show that the optimized K for Mang-Bang beach would be 0.17. With K = 0.17, via yearly grand circulation process comprising severe erosion by consecutively occurring yearly highest waves at the end of October, and gradual recovery over the winter and spring by swell, the advance of shore-line at the northern and southern ends of Mang-Bang beach by 18 m, and the retreat of shore-line by 2.4 m at the middle of Mang-Bang beach can be successfully duplicated in the numerical simulation.

Intelligent Optimal Route Planning Based on Context Awareness (상황인식 기반 지능형 최적 경로계획)

  • Lee, Hyun-Jung;Chang, Yong-Sik
    • Asia pacific journal of information systems
    • /
    • v.19 no.2
    • /
    • pp.117-137
    • /
    • 2009
  • Recently, intelligent traffic information systems have enabled people to forecast traffic conditions before hitting the road. These convenient systems operate on the basis of data reflecting current road and traffic conditions as well as distance-based data between locations. Thanks to the rapid development of ubiquitous computing, tremendous context data have become readily available making vehicle route planning easier than ever. Previous research in relation to optimization of vehicle route planning merely focused on finding the optimal distance between locations. Contexts reflecting the road and traffic conditions were then not seriously treated as a way to resolve the optimal routing problems based on distance-based route planning, because this kind of information does not have much significant impact on traffic routing until a a complex traffic situation arises. Further, it was also not easy to take into full account the traffic contexts for resolving optimal routing problems because predicting the dynamic traffic situations was regarded a daunting task. However, with rapid increase in traffic complexity the importance of developing contexts reflecting data related to moving costs has emerged. Hence, this research proposes a framework designed to resolve an optimal route planning problem by taking full account of additional moving cost such as road traffic cost and weather cost, among others. Recent technological development particularly in the ubiquitous computing environment has facilitated the collection of such data. This framework is based on the contexts of time, traffic, and environment, which addresses the following issues. First, we clarify and classify the diverse contexts that affect a vehicle's velocity and estimates the optimization of moving cost based on dynamic programming that accounts for the context cost according to the variance of contexts. Second, the velocity reduction rate is applied to find the optimal route (shortest path) using the context data on the current traffic condition. The velocity reduction rate infers to the degree of possible velocity including moving vehicles' considerable road and traffic contexts, indicating the statistical or experimental data. Knowledge generated in this papercan be referenced by several organizations which deal with road and traffic data. Third, in experimentation, we evaluate the effectiveness of the proposed context-based optimal route (shortest path) between locations by comparing it to the previously used distance-based shortest path. A vehicles' optimal route might change due to its diverse velocity caused by unexpected but potential dynamic situations depending on the road condition. This study includes such context variables as 'road congestion', 'work', 'accident', and 'weather' which can alter the traffic condition. The contexts can affect moving vehicle's velocity on the road. Since these context variables except for 'weather' are related to road conditions, relevant data were provided by the Korea Expressway Corporation. The 'weather'-related data were attained from the Korea Meteorological Administration. The aware contexts are classified contexts causing reduction of vehicles' velocity which determines the velocity reduction rate. To find the optimal route (shortest path), we introduced the velocity reduction rate in the context for calculating a vehicle's velocity reflecting composite contexts when one event synchronizes with another. We then proposed a context-based optimal route (shortest path) algorithm based on the dynamic programming. The algorithm is composed of three steps. In the first initialization step, departure and destination locations are given, and the path step is initialized as 0. In the second step, moving costs including composite contexts into account between locations on path are estimated using the velocity reduction rate by context as increasing path steps. In the third step, the optimal route (shortest path) is retrieved through back-tracking. In the provided research model, we designed a framework to account for context awareness, moving cost estimation (taking both composite and single contexts into account), and optimal route (shortest path) algorithm (based on dynamic programming). Through illustrative experimentation using the Wilcoxon signed rank test, we proved that context-based route planning is much more effective than distance-based route planning., In addition, we found that the optimal solution (shortest paths) through the distance-based route planning might not be optimized in real situation because road condition is very dynamic and unpredictable while affecting most vehicles' moving costs. For further study, while more information is needed for a more accurate estimation of moving vehicles' costs, this study still stands viable in the applications to reduce moving costs by effective route planning. For instance, it could be applied to deliverers' decision making to enhance their decision satisfaction when they meet unpredictable dynamic situations in moving vehicles on the road. Overall, we conclude that taking into account the contexts as a part of costs is a meaningful and sensible approach to in resolving the optimal route problem.