• Title/Summary/Keyword: Optimized mechanism

Search Result 387, Processing Time 0.019 seconds

Development of Automatic Packing System of One Station for Fasteners(II) : Packing System Manufacture and Performance Test (원 스테이션 파스너 자동포장기 개발(II) : 제작 및 성능검증)

  • Kim, Yong-Seok;Jeong, Chan-Se;Yang, Soon-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.5
    • /
    • pp.653-658
    • /
    • 2011
  • In general, the purpose of packaging fasteners is a series of management activities to maintain the condition at the time of production until they get delivered to the end user. An automatic packing system for fasteners is consisted of bucket conveyor, slide feeder, vision inspection system, box-magazine conveyor system and automatic packing machine. Also, the automatic packing machine is consisted of six modules including charging device, clamping/opening device, sealing/cutting device, feeding/air-shower device, supplying/adjusting device and device frame, etc. In this paper, we proposed an automatic packing mechanism of the one station concept for packing work of fastener objects where the continuous batch work is performed in a finite space. The proposed one-station packing mechanism has been optimized through mechanical, dynamical, structural and fluid analyses. And it had been manufactured as the prototype of automatic packing machine. The field test for validation of performance was performed directly at the production line of bolt and screw. In the field test, this packing machine showed an efficiency of about 4.5 times the manual operation. It also showed 30% reduction in the consumption of packing materials compared to the manual operation. This automatic packing machine for fastener objects will be commercialized soon.

Damage controlled optimum seismic design of reinforced concrete framed structures

  • Gharehbaghi, Sadjad
    • Structural Engineering and Mechanics
    • /
    • v.65 no.1
    • /
    • pp.53-68
    • /
    • 2018
  • In this paper, an innovative procedure is proposed for the seismic design of reinforced concrete frame structures. The main contribution of the proposed procedure is to minimize the construction cost, considering the uniform damage distribution over the height of structure due to earthquake excitations. As such, this procedure is structured in the framework of an optimization problem, and the initial construction cost is chosen as the objective function. The aim of uniform damage distribution is reached through a design constraint in the optimization problem. Since this aim requires defining allowable degree of damage, a damage pattern based on the concept of global collapse mechanism is presented. To show the efficiency of the proposed procedure, the uniform damage-based optimum seismic design is compared with two other seismic design procedures, which are the strength-based optimum seismic design and the damage-based optimum seismic design. By using the three different seismic design methods, three reinforced concrete frames including six-, nine-, and twelve-story with three bays are designed optimally under a same artificial earthquake. Then, to show the effects of the uniform damage distribution, all three optimized frames are used for seismic damage analysis under a suite of earthquake records. The results show that the uniform damage-based optimum seismic design method renders a design that will suffer less damage under severe earthquakes.

Study on Pressure Variation around an Open Cavity (공동 주위에서의 압력 변화에 대한 연구)

  • 허대녕;이덕주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.843-846
    • /
    • 2004
  • Cavity tone is generated due to the feedback between flow and acoustic wave. It is recognized that the period is determined by the time required for the flow convection in one direction, the time required for the acoustic propagation in the other direction and the time for phase shift depending on the flows and mode. Most of the phenomena have been investigated by experiments and a simple but fundamental theory. But the cause of the phase shift and the correctness of the theory have not been clearly explained so far. In this paper, the phenomena are calculated numerically to obtain detail information of flow and acoustic wave to explain the mechanism including the phase. High order high resolution scheme of optimized high order compact is used to resolve the small acoustic quantities and large flow quantities at the same time. The data are reduced using cross correlation function in space and time and cross spectral density function which has phase information. Abrupt change in pressure near corner in cavity is observed and is relate to phase variation. The time required for the feedback between the flow and acoustic wave is calculated after the numerical simulation f3r various modes. The periods based on the time calculated using the above method and direct observation from the acoustic waves generated and propagated in the numerical simulation are compared. It is found that no phase shift is required if we examine the time required carefully. Rossiter's formula for the cavity tone used for quick estimation needs to be modified far some modes.

  • PDF

Optimization of Base Plates and Contact Switches in Trunk Latches (트렁크 래치의 베이스 플레이트와 접촉스위치의 최적화)

  • Kim, Kyungnam;Noh, Yoojeong;Kim, Donghoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.97-104
    • /
    • 2014
  • Automobile trunk latches enable trunks to be opened and closed by a latch mechanism, which can be selectively positioned between a locked condition and an open condition. To maintain structural and electronic performance of the trunk latch, the latch needs to endure impact load that occurs in its open and close motion, and a dynamic mechanism needs to be electronically controled by a contact switch connected with a small DC motor. A base plate, which is the most important component relating to the structural safety, commonly uses a high stiffness material SAPH440-P with high manufacturing cost. In this paper, through structural analysis and optimization, production cost is significantly reduced by replacing SAPH440-P used in some region of the base plate with engineering plastic PBT GF 20%. The optimized contact switch reduces difference between distributed pressures of its two legs, which leads to improve the electronic performance of the trunk latch.

An Optimal ODAM-Based Broadcast Algorithm for Vehicular Ad-Hoc Networks

  • Sun, Weifeng;Xia, Feng;Ma, Jianhua;Fu, Tong;Sun, Yu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.12
    • /
    • pp.3257-3274
    • /
    • 2012
  • Broadcast routing has become an important research field for vehicular ad-hoc networks (VANETs) recently. However, the packet delivery rate is generally low in existing VANET broadcast routing protocols. Therefore, the design of an appropriate broadcast protocol based on the features of VANET has become a crucial part of the development of VANET. This paper analyzes the disadvantage of existing broadcast routing protocols in VANETs, and proposes an improved algorithm (namely ODAM-C) based on the ODAM (Optimized Dissemination of Alarm Messages) protocol. The ODAM-C algorithm improves the packet delivery rate by two mechanisms based on the forwarding features of ODAM. The first distance-based mechanism reduces the possibility of packet loss by considering the angles between source nodes, forwarding nodes and receiving nodes. The second mechanism increases the redundancy of forwarding nodes to guarantee the packet success delivery ratio. We show by analysis and simulations that the proposed algorithm can improve packet delivery rate for vehicular networks compared against two widely-used existing protocols.

Strut-and-tie model of deep beams with web openings - An optimization approach

  • Guan, Hong
    • Structural Engineering and Mechanics
    • /
    • v.19 no.4
    • /
    • pp.361-379
    • /
    • 2005
  • Reinforced concrete deep beams have useful applications in tall buildings and foundations. Over the past two decades, numerous design models for deep beams were suggested. However even the latest design manuals still offer little insight into the design of deep beams in particular when complexities exist in the beams like web openings. A method commonly suggested for the design of deep beams with openings is the strut-and-tie model which is primarily used to represent the actual load transfer mechanism in a structural concrete member under ultimate load. In the present study, the development of the strut-and-tie model is transformed to the topology optimization problem of continuum structures. During the optimization process, both the stress and displacement constraints are satisfied and the performance of progressive topologies is evaluated. The influences on the strut-and-tie model in relation to different size, location and number of openings, as well as different loading and support conditions in deep beams are examined in some detail. In all, eleven deep beams with web openings are optimized and compared in nine groups. The optimal strut-and-tie models achieved are also compared with published experimental crack patterns. Numerical results have shown to confirm the experimental observations and to efficiently represent the load transfer mechanism in concrete deep beams with openings under ultimate load.

Studies on vibration control effects of a semi-active impact damper for seismically excited nonlinear building

  • Lu, Zheng;Zhang, Hengrui;Masri, Sami F.
    • Smart Structures and Systems
    • /
    • v.24 no.1
    • /
    • pp.95-110
    • /
    • 2019
  • The semi-active impact damper (SAID) is proposed to improve the damping efficiency of traditional passive impact dampers. In order to investigate its damping mechanism and vibration control effects on realistic engineering structures, a 20-story nonlinear benchmark building is used as the main structure. The studies on system parameters, including the mass ratio, damping ratio, rigid coefficient, and the intensity of excitation are carried out, and their effects both on linear and nonlinear indexes are evaluated. The damping mechanism is herein further investigated and some suggestions for the design in high-rise buildings are also proposed. To validate the superiority of SAID, an optimal passive particle impact damper ($PID_{opt}$) is also investigated as a control group, in which the parameters of the SAID remain the same, and the optimal parameters of the $PID_{opt}$ are designed by differential evolution algorithm based on a reduced-order model. The numerical simulation shows that the SAID has better control effects than that of the optimized passive particle impact damper, not only for linear indexes (e.g., root mean square response), but also for nonlinear indexes (e.g., component energy consumption and hinge joint curvature).

Performance Evaluation of MACSec for Host Mobility (MACSec의 단말 이동성 성능평가)

  • Ahn, Sangjun;Shin, Dongcheon
    • The Journal of Society for e-Business Studies
    • /
    • v.24 no.2
    • /
    • pp.55-70
    • /
    • 2019
  • It is essential to consider the relationships between each component in the communication infrastructure in order to build and optimize the infrastructure. In this paper, based on the major factors to consider for the optimized communication infrastructure, we propose an enhanced MACSec-based deployment mechanism for communication infrastructure. The proposed MACSec mechanism can replace the IPSec without the additional devices and redesign of the communication infrastructure. In addition, we evaluate the performance of MACSec and IPSec in terms of the major factors such as message overhead, encryption processing, and host mobility. According to the evaluation results, we can say that MACSec is superior to IPSec with regard to mobility as well as hop delay and message overhead.

Attention Capsule Network for Aspect-Level Sentiment Classification

  • Deng, Yu;Lei, Hang;Li, Xiaoyu;Lin, Yiou;Cheng, Wangchi;Yang, Shan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.4
    • /
    • pp.1275-1292
    • /
    • 2021
  • As a fine-grained classification problem, aspect-level sentiment classification predicts the sentiment polarity for different aspects in context. To address this issue, researchers have widely used attention mechanisms to abstract the relationship between context and aspects. Still, it is difficult to effectively obtain a more profound semantic representation, and the strong correlation between local context features and the aspect-based sentiment is rarely considered. In this paper, a hybrid attention capsule network for aspect-level sentiment classification (ABASCap) was proposed. In this model, the multi-head self-attention was improved, and a context mask mechanism based on adjustable context window was proposed, so as to effectively obtain the internal association between aspects and context. Moreover, the dynamic routing algorithm and activation function in capsule network were optimized to meet the task requirements. Finally, sufficient experiments were conducted on three benchmark datasets in different domains. Compared with other baseline models, ABASCap achieved better classification results, and outperformed the state-of-the-art methods in this task after incorporating pre-training BERT.

Newer Insights on Ferrate(VI) Reactions with Various Water Pollutants: A Review

  • Lalthazuala, Levia;Lalhmunsiama, Lalhmunsiama;Vanlalhmingmawia, Chhakchhuak;Tiwari, Diwakar;Choi, Suk Soon;Lee, Seung-Mok
    • Applied Chemistry for Engineering
    • /
    • v.33 no.3
    • /
    • pp.258-271
    • /
    • 2022
  • Ferrate (VI) [Fe(VI)] has multi-functional features, which include potential oxidant, coagulant, and disinfectant. Because of these distinctive properties, numerous studies on the synthesis of ferrate (VI) and its possible applications in a wide research areas have been investigated. This review highlights the recent development made on different synthesis methods for ferrate including wet chemical, electrochemical, and thermal methods. The recent advancements achieved in ferrate (VI) oxidation and the synergistic effect of the oxidative properties of ferrate (VI) in the presence of various compounds or materials are also included. Moreover, this review discusses the applications of ferrate (VI) for degrading various types of water pollutants and its reaction mechanism. The optimized experimental conditions and interaction mechanisms of ferrate (VI) with micro-pollutants, dyes, and other organic compounds are also elaborated upon to provide greater insight for future studies. Lastly, the limitations and prospects of the ferrate use in the treatment of polluted water are described.