Browse > Article
http://dx.doi.org/10.14478/ace.2022.1030

Newer Insights on Ferrate(VI) Reactions with Various Water Pollutants: A Review  

Lalthazuala, Levia (Department of Chemistry, Mizoram University)
Lalhmunsiama, Lalhmunsiama (Department of Industrial Chemistry, Mizoram University)
Vanlalhmingmawia, Chhakchhuak (Department of Chemistry, Mizoram University)
Tiwari, Diwakar (Department of Chemistry, Mizoram University)
Choi, Suk Soon (Department of Biological and Environmental Engineering, Semyung University)
Lee, Seung-Mok (Department of Environmental Engineering, Catholic Kwandong University)
Publication Information
Applied Chemistry for Engineering / v.33, no.3, 2022 , pp. 258-271 More about this Journal
Abstract
Ferrate (VI) [Fe(VI)] has multi-functional features, which include potential oxidant, coagulant, and disinfectant. Because of these distinctive properties, numerous studies on the synthesis of ferrate (VI) and its possible applications in a wide research areas have been investigated. This review highlights the recent development made on different synthesis methods for ferrate including wet chemical, electrochemical, and thermal methods. The recent advancements achieved in ferrate (VI) oxidation and the synergistic effect of the oxidative properties of ferrate (VI) in the presence of various compounds or materials are also included. Moreover, this review discusses the applications of ferrate (VI) for degrading various types of water pollutants and its reaction mechanism. The optimized experimental conditions and interaction mechanisms of ferrate (VI) with micro-pollutants, dyes, and other organic compounds are also elaborated upon to provide greater insight for future studies. Lastly, the limitations and prospects of the ferrate use in the treatment of polluted water are described.
Keywords
High-valent iron (Fe(VI)); Mineralization; Micro-pollutants; Mechanism; Synthesis of high purity Fe(VI); Insights of reactions;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 T. Mackul'ak, J. Prousek, L. Svorc, J. Ryba, J. Skubak, and M. Drtil, Treatment of industrial wastewater with high content of polyethylene glycols by Fenton-like reaction system (Fe0/H2O2/H2SO4), Desalination Water Treat., 51, 4489-4496 (2013).   DOI
2 R. Yngard, S. Damrongsiri, K. Osathaphan, and V. K. Sharma, Ferrate(VI) oxidation of zinc-cyanide complex, Chemosphere, 69, 729-735 (2007).   DOI
3 Y. Jiang, J. E. Goodwill, J. E. Tobiason, and D. A. Reckhow, Impacts of ferrate oxidation on natural organic matter and disinfection byproduct precursors, Water Res., 96, 114-125 (2016).   DOI
4 V. K. Sharma, R. Zboril, and R. S. Varma, Ferrates: greener oxidants with multimodal action in water treatment technologies, Acc. Chem. Res., 48, 182-191 (2015).   DOI
5 L. Delaude and P. Laszlo, A novel oxidizing reagent based on potassium ferrate(VI), J. Org. Chem., 61, 6360-6370 (1996).   DOI
6 Z. Macova and K. Bouzek, The influence of electrolyte composition on electrochemical ferrate(VI) synthesis. Part II: anodic dissolution kinetics of a steel anode rich in silicon, J. Appl. Electrochem., 41, 615-626 (2011).
7 J.-Q. Jiang, Advances in the development and application of ferrate(VI) for water and wastewater treatment, J. Chem. Tech. Biotech., 89, 165-177 (2014).   DOI
8 P. Gago-Ferrero, M. Gros, L. Ahrens, and K. Wiberg, Impact of on-site, small and large scale wastewater treatment facilities on levels and fate of pharmaceuticals, personal care products, artificial sweeteners, pesticides, and perfluoroalkyl substances in recipient waters, Sci. Total Environ., 601-602, 1289-1297 (2017).   DOI
9 S. Klatte, H. C. Schaefer, and M. Hempel, Pharmaceuticals in the environment - A short review on options to minimize the exposure of humans, animals and ecosystems, Sustain. Chem. Pharm., 5, 61-66 (2017).   DOI
10 Z. Yang, R. Su, S. Luo, R. Spinney, M. Cai, R. Xiao, and Z. Wei, Comparison of the reactivity of ibuprofen with sulfate and hydroxyl radicals: An experimental and theoretical study, Sci. Total Environ., 590-591, 751-760 (2017).   DOI
11 M. K. Paidi, P. Satapute, M. S. Haider, S. S. Udikeri, Y. L. Ramachandra, D. V. N. Vo, M. Govarthanan, and S. Jogaiah, Mitigation of organophosphorus insecticides from environment: Residual detoxification by bioweapon catalytic scavengers, Environ. Res., 200, 1-12 (2021).
12 V. K. Sharma, Ferrate(VI) and ferrate(V) oxidation of organic compounds: Kinetics and mechanism, Coord. Chem. Rev., 257, 495-510 (2013).   DOI
13 C. Huo, A. Ahmed Dar, A. Nawaz, J. Hameed, G. albashar, B. Pan, and C. Wang, Groundwater contamination with the threat of COVID-19: Insights into CSR theory of Carroll's pyramid, J. King Saud Univ. Sci., 33, 101295 (2021).   DOI
14 L. Hu and Z. Xia, Application of ozone micro-nano-bubbles to groundwater remediation, J. Hazard. Mater., 342, 446-453 (2018).   DOI
15 P. Jepson and R. Law, Persistent pollutants, persistent threats, Science, 352, 1388-1389 (2016).   DOI
16 Y. Lee, R. Kissner, and U. von Gunten, Reaction of ferrate(VI) with ABTS and self-decay of ferrate(VI): kinetics and mechanisms, Environ. Sci. Technol., 48, 5154-5162 (2014).   DOI
17 V. Sharma, L. Chen, and R. Zboril, High Valent FeVI (Ferrate): A sustainable green oxidant in organic chemistry and transformation of pharmaceuticals, ACS Sustain. Chem. Eng., 4, (2015).
18 P. Canizares, C. Saez, A. Sanchez-Carretero, and M. Rodrigo, Synthesis of novel oxidants by electrochemical technology, J. Appl. Electrochem., 39, 2143-2149 (2009).   DOI
19 A. Karlesa, G. A. D. De Vera, M. C. Dodd, J. Park, M. P. B. Espino, and Y. Lee, Ferrate(VI) oxidation of β-lactam antibiotics: reaction kinetics, antibacterial activity changes, and transformation products, Environ. Sci. Technol., 48, 10380-10389 (2014).   DOI
20 Y. L. Wei, Y. S. Wang, and C. H. Liu, Preparation of potassium ferrate from spent steel pickling liquid, Metals, 5, 1770-1787 (2015).   DOI
21 V. K. Sharma, Potassium ferrate(VI): an environmentally friendly oxidant, Adv. Environ. Res., 6, 143-156 (2002).   DOI
22 D. Tiwari, L. Sailo, and L. Pachuau, Remediation of aquatic environment contaminated with the iminodiacetic acid metal complexes using ferrate(VI), Sep. Purif. Technol., 132, 77-83 (2014).   DOI
23 Seung-Mok Lee and T. Diwakar, Application of ferrate(VI) in the treatment of industrial wastes containing metal-complexed cyanides: A green treatment, J. Environ. Sci., 21,1347-1352 (2009).   DOI
24 V. K. Sharma, G. W. Luther, and F. J. Millero, Mechanisms of oxidation of organosulfur compounds by ferrate(VI), Chemosphere, 82, 1083-1089 (2011).   DOI
25 J. Hu, Z. Li, A. Zhang, S. Mao, I. R. Jenkinson, and W. Tao, Using a strong chemical oxidant, potassium ferrate (K2FeO4), in waste activated sludge treatment: A review, Environ. Res., 188, 1-35 (2020).
26 I. Ciabatti, F. Tognotti, and L. Lombardi, Treatment and reuse of dyeing effluents by potassium ferrate, Desalination, 250, 222-228 (2010).   DOI
27 J. Q. Jiang, and B. Lloyd, Progress in the development and use of ferrate(VI) salt as an oxidant and coagulant for water and wastewater treatment, Water Res., 36, 1397-1408, (2002).   DOI
28 D. Tiwari and S. M. Lee, Ferrate(VI) in the treatment of wastewaters: A new generation green chemical, In: F. S. Garca Einschlag (Ed.). Waste Water - Treatment and reutilization, 241-276, InTech (2011).
29 L. Lalthazuala, D. Tiwari, S. M. Lee, and S. S. Choi, Efficient removal of sulfamethoxazole in aqueous solutions using ferrate (VI): A greener treatment, Appl. Chem. Eng., 32, 340-347 (2021).   DOI
30 M. Feng, X. Wang, J. Chen, R. Qu, Y. Sui, L. Cizmas, Z. Wang, and V. K. Sharma, Degradation of fluoroquinolone antibiotics by ferrate(VI): Effects of water constituents and oxidized products, Water Res., 103, 48-57 (2016).   DOI
31 M. Feng and V. K. Sharma, Enhanced oxidation of antibiotics by ferrate(VI)-sulfur(IV) system: Elucidating multi-oxidant mechanism, Chem. Eng. J., 341, 137-145 (2018).   DOI
32 M. Ghosh, K. Manoli, J. B. Renaud, L. Sabourin, G. Nakhla, V. K. Sharma, and A. K. Ray, Rapid removal of acesulfame potassium by acid-activated ferrate(VI) under mild alkaline conditions, Chemosphere, 230, 416-423 (2019).   DOI
33 Y. Chen, Y. Xiong, Z. Wang, Y. Chen, G. Chen, and Z. Liu, UV/ferrate(VI) oxidation of profenofos: efficiency and mechanism, Desalination Water Treat., 55, 1-8 (2014).
34 N. Premnath, K. Mohanrasu, R. Guru Raj Rao, G. H. Dinesh, G. S. Prakash, V. Ananthi, K. Ponnuchamy, G. Muthusamy, and A. Arun, A crucial review on polycyclic aromatic Hydrocarbons - Environmental occurrence and strategies for microbial degradation, Chemosphere, 280, 1-14 (2021).
35 B. Pan, Y. Wu, J. Qin, and C. Wang, Ultrathin Co0.85Se nanosheet cocatalyst for visible-light CO2 photoreduction, Catal. Today, 335, 208-213 (2019).   DOI
36 L. Sailo, L. Pachuau, J. K. Yang, S. M. Lee, and D. Tiwari, Efficient use of ferrate(VI) for the remediation of wastewater contaminated with metal complexes, Environ. Eng. Res., 20, 89-97 (2015).   DOI
37 D. Tiwari, H.-U. Kim, B.-J. Choi, S.-M. Lee, O.-H. Kwon, K.-M. Choi, and J.-K. Yang, Ferrate(VI): a green chemical for the oxidation of cyanide in aqueous/waste solutions, J. Environ. Sci. Health - Toxic/Hazard. Subst. Environ. Eng., 42, 803-810 (2007).
38 J. Q. Jiang, S. Wang, and A. Panagoulopoulos, The exploration of potassium ferrate(VI) as a disinfectant/coagulant in water and wastewater treatment, Chemosphere, 63, 212-219 (2006).   DOI
39 H. Liu, X. Pan, J. Chen, Y. Qi, R. Qu, and Z. Wang, Kinetics and mechanism of the oxidative degradation of parathion by Ferrate(VI), Chem. Eng. J., 365, 142-152 (2019).   DOI
40 L. Lalthazuala, Lalhmunsiama, D. Tiwari, and S. M. Lee, Efficient use of ferrate(VI) in the remediation of aqueous solutions contaminated with potential micropollutants: Simultaneous removal of triclosan and amoxicillin, Ind. J. Biochem. Biophysics 58, 532-542 (2021).
41 A. Acosta-Rangel, M. Sanchez-Polo, M. Rozalen, J. Rivera-Utrilla, A. M. S. Polo, M. S. Berber-Mendoza, and M. V. Lopez-Ramon, Oxidation of sulfonamides by ferrate(VI): Reaction kinetics, transformation byproducts and toxicity assesment, J. Environ. Manage., 255, 1-11 (2020).
42 A. A. Dar, X. Wang, S. Wang, J. Ge, A. Shad, F. Ai, and Z. Wang, Ozonation of pentabromophenol in aqueous basic medium: Kinetics, pathways, mechanism, dimerization and toxicity assessment, Chemosphere, 220, 546-555 (2019).   DOI
43 S. Sun, J. Jiang, L. Qiu, S. Pang, J. Li, C. Liu, L. Wang, M. Xue, and J. Ma, Activation of ferrate by carbon nanotube for enhanced degradation of bromophenols: Kinetics, products, and involvement of Fe(V)/Fe(IV), Water Res., 156, 1-8 (2019).   DOI
44 X. Zhu, J. Li, B. Xie, D. Feng, and Y. Li, Accelerating effects of biochar for pyrite-catalyzed Fenton-like oxidation of herbicide 2,4-D, Chem. Eng. J., 391, 1-12 (2020).
45 J. Q. Jiang, Z. Zhou, S. Patibandla, and X. Shu, Pharmaceutical removal from wastewater by ferrate(VI) and preliminary effluent toxicity assessments by the zebrafish embryo model, Microchem. J., 110, 239-245 (2013).   DOI
46 V. K. Sharma, S. K. Mishra, and A. K. Ray, Kinetic assessment of the potassium ferrate(VI) oxidation of antibacterial drug sulfamethoxazole, Chemosphere, 62, 128-134 (2006).   DOI
47 V. K. Sharma and S. K. Mishra, Ferrate(VI) oxidation of ibuprofen: A kinetic study, Environ. Chem. Lett., 3, 182-185 (2006).   DOI
48 Y. Ma, N. Gao, and C. Li, Degradation and pathway of tetracycline hydrochloride in aqueous solution by potassium ferrate, Environ. Eng. Sci., 29, 357-362 (2012).   DOI
49 S. Barisci, F. Ulu, M. Sillanpaa, and A. Dimoglo, The usage of different forms of ferrate (VI) ion for amoxicillin and ciprofloxacin removal: density functional theory based modelling of redox decomposition: The usage of different forms of ferrate (VI) ion, J. Chem. Technol. Biotechnol., 91, 257-266 (2016).   DOI
50 K. Manoli, G. Nakhla, M. Feng, V. K. Sharma, and A. K. Ray, Silica gel-enhanced oxidation of caffeine by ferrate(VI), Chem. Eng. J., 330, 987-994 (2017).   DOI
51 J. Rivera-Utrilla, G. Prados-Joya, M. Sanchez-Polo, M. A. FerroGarcia, and I. Bautista-Toledo, Removal of nitroimidazole antibiotics from aqueous solution by adsorption/bioadsorption on activated carbon, J. Hazard. Mater., 170, 298-305 (2009).   DOI
52 D. Tiwari, J.-K. Yang, Y.-Y. Chang, and S.-M. Lee, Application of ferrate(VI) on the decomplexation of Cu(II)-EDTA, Environ. Eng. Res., 13, 131-135 (2008).   DOI
53 Z. Zhou and J. Q. Jiang, Treatment of selected pharmaceuticals by ferrate(VI): Performance, kinetic studies and identification of oxidation products, J. Pharm. Biomed. Anal., 106, 37-45 (2015).   DOI
54 Y. Lee, M. Cho, J. Y. Kim, and J. Yoon, Chemistry of ferrate (Fe(VI)) in aqueous solution and its applications as a green chemical, J. Ind. Eng. Chem., 10, 161-171 (2004).   DOI
55 B. Yang, G. G. Ying, Z. F. Chen, J. L. Zhao, F. Q. Peng, and X. W. Chen, Ferrate(VI) oxidation of tetrabromobisphenol A in comparison with bisphenol A, Water Res., 62, 211-219 (2014).   DOI
56 P. Zhang, G. Zhang, J. Dong, M. Fan, and G. Zeng, Bisphenol A oxidative removal by ferrate (Fe(VI)) under a weak acidic condition, Sep. Purif. Technol., 84, 46-51 (2012).   DOI
57 Z. Zhou and J. Q. Jiang, Reaction kinetics and oxidation products formation in the degradation of ciprofloxacin and ibuprofen by ferrate(VI), Chemosphere, 119, 95-100 (2015).
58 D. Tiwari, L. Sailo, Y.-Y. Yoon, and S.-M. Lee, Efficient use of ferrate(VI) in the oxidative removal of potassium hydrogen phthalate from aqueous solutions, Environ. Eng. Res., 23, 129-135 (2018).   DOI
59 Lalhmunsiama, L. Lalthazuala, and D. Tiwari, Ferrate (VI) as efficient oxidant for elimination of sulfamethazine in aqueous wastes: Real matrix implications. Environ. Eng. Res., 27 (5), 210256 (2021).   DOI
60 B. Yang, G. G. Ying, J. L. Zhao, S. Liu, L. J. Zhou, and F. Chen, Removal of selected endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) during ferrate(VI) treatment of secondary wastewater effluents, Water Res., 46, 2194-2204 (2012).   DOI
61 Y. Lee, S. G. Zimmermann, A. T. Kieu, and U. von Gunten, Ferrate (Fe(VI)) application for municipal wastewater treatment: A novel process for simultaneous micropollutant oxidation and phosphate removal, Environ. Sci. Technol., 43, 3831-3838 (2009).   DOI
62 Y. Lee, B. Escher and U. Gunten, Efficient removal of estrogenic activity during oxidative treatment of waters containing steroid estrogens, Environ. Sci. Technol., 42, 6333-6339 (2008).   DOI
63 V. Sharma, R. Zboril and T. McDonald, Formation and toxicity of brominated disinfection byproducts during chlorination and chloramination of water: A review, J. Environ. Sci. Health B., 49, 212-228 (2014).   DOI
64 S. Wang, Y. Hu, and J. Wang, Strategy of combining radiation with ferrate oxidation for enhancing the degradation and mineralization of carbamazepine, Sci. Total Environ., 687, 1028-1033 (2019).   DOI
65 C. Luo, M. Feng, V. K. Sharma, and C. H. Huang, Oxidation of pharmaceuticals by ferrate(VI) in hydrolyzed urine: Effects of major inorganic constituents, Environ. Sci. Technol., 53, 5272-5281 (2019).   DOI
66 H. Aslani, S. Nasseri, R. Nabizadeh, A. Mesdaghinia, M. Alimohammadi, and S. Nazmara, Haloacetic acids degradation by an efficient Ferrate/UV process: Byproduct analysis, kinetic study, and application of response surface methodology for modeling and optimization, J. Environ. Manage., 203, 218-228 (2017).   DOI
67 B. Pan, M. Feng, T. J. McDonald, K. Manoli, C. Wang, C. H. Huang, and V. K. Sharma, Enhanced ferrate(VI) oxidation of micropollutants in water by carbonaceous materials: Elucidating surface functionality, Chem. Eng. J., 398, 1-31 (2020) 125607.
68 S. Wu, H. Liu, Y. Lin, C. Yang, W. Lou, J. Sun, C. Du, D. Zhang, L. Nie, K. Yin, and Y. Zhong, Insights into mechanisms of UV/ferrate oxidation for degradation of phenolic pollutants: Role of superoxide radicals, Chemosphere, 244, 1-39 (2020).
69 L. Zheng, J. Cui, and Y. Deng, Emergency water treatment with combined ferrate(VI) and ferric salts for disasters and disease outbreaks, Environ. Sci. Water Res. Technol., 6, 2816-2831 (2020).   DOI
70 S. Barisci, F. Ulu, M. Sillanpaa, and A. Dimoglo, Evaluation of flurbiprofen removal from aqueous solution by electrosynthesized ferrate(VI) ion and electrocoagulation process, Chem. Eng. J., 262, 1218-1225 (2015).   DOI
71 Y. Y. Eng, V. K. Sharma, and A. K. Ray, Ferrate(VI): Green chemistry oxidant for degradation of cationic surfactant, Chemosphere, 63, 1785-1790 (2006).   DOI
72 Y. H. Chuang, A. Szczuka, F. Shabani, J. Munoz, R. Aflaki, S. D. Hammond, and W. A. Mitch, Pilot-scale comparison of microfiltration/reverse osmosis and ozone/biological activated carbon with UV/hydrogen peroxide or UV/free chlorine AOP treatment for controlling disinfection byproducts during wastewater reuse, Water Res., 152, 215-225 (2019).   DOI
73 C. Kim, V. R. Panditi, P. R. Gardinali, R. S. Varma, H. Kim, and V. K. Sharma, Ferrate promoted oxidative cleavage of sulfonamides: Kinetics and product formation under acidic conditions, Chem. Eng. J., 279, 307-316. (2015)   DOI
74 K. Manoli, G. Nakhla, A. K. Ray, and V. K. Sharma, Enhanced oxidative transformation of organic contaminants by activation of ferrate(VI): Possible involvement of FeV/FeIV species, Chem. Eng. J., 307, 513-517 (2017).   DOI
75 G. Matafonova and V. Batoev, Recent advances in application of UV light-emitting diodes for degrading organic pollutants in water through advanced oxidation processes: A review, Water Res., 132, 177-189 (2018).   DOI
76 V. K. Sharma, F. Liu, S. Tolan, M. Sohn, H. Kim, and M. A. Oturan, Oxidation of β-lactam antibiotics by ferrate(VI), Chem. Eng. J., 221, 446-451 (2013).   DOI
77 B. Chen, Z. Xu, H. Ya, X. Chen, and M. Xu, Impact of the water input from the eastern Qiongzhou Strait to the Beibu Gulf on Guangxi coastal circulation, Acta Oceanol. Sin., 38, 1-11 (2019).
78 M. Czolderova, M. Behul, J. Filip, P. Zajicek, R. Grabic, A. Vojs-Stanova, M. Gal, K. Kerekes, J. Hives, J. Ryba, M. Rybanska, P. Brandeburova, and T. Mackulak, 3D printed polyvinyl alcohol ferrate(VI) capsules: Effective means for the removal of pharmaceuticals and illicit drugs from wastewater, Chem. Eng. J., 349, 269-275 (2018).   DOI
79 J. O. Tijani, O. O. Fatoba, and L. F. Petrik, A review of pharmaceuticals and endocrine-disrupting compounds: Sources, effects, removal, and detections, Water. Air. Soil Pollut., 224, 1-43 (2013).
80 Q. Han, W. Dong, H. Wang, T. Liu, Y. Tian, and X. Song, Degradation of tetrabromobisphenol A by ferrate(VI) oxidation: Performance, inorganic and organic products, pathway and toxicity control, Chemosphere, 198, 92-102 (2018).   DOI
81 P. Satapute, M. K. Paidi, M. Kurjogi, and S. Jogaiah, Physiological adaptation and spectral annotation of Arsenic and Cadmium heavy metal-resistant and susceptible strain Pseudomonas taiwanensis, Environ. Pollut., 251, 555-563 (2019).   DOI
82 J. Nie, S. Yan, L. Lian, V. K. Sharma, and W. Song, Development of fluorescence surrogates to predict the ferrate(VI) oxidation of pharmaceuticals in wastewater effluents, Water Res., 185, 1-11 (2020).
83 E. M. Casbeer, V. K. Sharma, Z. Zajickova, and D. D. Dionysiou, Kinetics and mechanism of oxidation of tryptophan by ferrate(VI), Environ. Sci. Technol., 47, 4572-4580 (2013).   DOI
84 N. Noorhasan, B. Patel, and V.K. Sharma, Ferrate(VI) oxidation of glycine and glycylglycine: Kinetics and products, Water Res., 44, 927-935 (2010).   DOI
85 D. Tiwari, L. Sailo, Y. Y. Yoon, and S. Lee, Efficient use of ferrate(VI) in the oxidative removal of potassium hydrogen phthalate (KHP) from aqueous solutions, Environ. Eng. Res., 23, 129-135 (2017).   DOI
86 Y. Lee and U. von Gunten, Oxidative transformation of micropollutants during municipal wastewater treatment: Comparison of kinetic aspects of selective (chlorine, chlorine dioxide, ferrateVI, and ozone) and non-selective oxidants (hydroxyl radical), Water Res., 44, 555-566 (2010).   DOI
87 Z. Qiang and C. Adams, Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics, Water Res., 38, 2874-2890 (2004).   DOI
88 D. L. Ross and C. M. Riley, Aqueous solubilities of some variously substituted quinolone antimicrobials, Int. J. Pharm. 63, 237-250 (1990).   DOI
89 J. Q. Jiang, A. Panagoulopoulos, M. Bauer, and P. Pearce, The application of potassium ferrate for sewage treatment, J. Environ. Manage., 79, 215-220 (2006).   DOI
90 L. Sailo, D. Tiwari, and S. M. Lee, Degradation of some micro-pollutants from aqueous solutions using ferrate (VI): Physicochemical studies, Sep. Sci. Technol., 52, 2756-2766 (2017).
91 Z. Eskandari, A. Talaiekhozani, M. R. Talaie, and F. Banisharif, Enhancing ferrate(VI) oxidation process to remove blue 203 from wastewater utilizing MgO nanoparticles, J. Environ. Manage., 231, 297-302 (2019).   DOI
92 W. Jiang, L. Chen, S. Batchu, P. Gardinali, L. Jasa, B. Marsalek, R. Zboril, D. Dionysiou, K. O'Shea, and V. Sharma, Oxidation of microcystin-LR by ferrate(VI): Kinetics, degradation pathways, and toxicity assessments, Environ. Sci. Technol., 48, 12154-12172 (2014).
93 Y. Deng, C. Jung, Y. Liang, N. Goodey, and T. D. Waite, Ferrate(VI) decomposition in water in the Absence and Presence of Natural Organic Matter (NOM), Chem. Eng. J., 334, 2335-2342 (2018).   DOI
94 J. Chen, X. Xu, X. Zeng, M. Feng, R. Qu, Z. Wang, N. Nesnas, and V. K. Sharma, Ferrate(VI) oxidation of polychlorinated diphenyl sulfides: Kinetics, degradation, and oxidized products, Water Res., 143, 1-9 (2018).   DOI
95 G. Bhavya, S. A. Belorkar, R. Mythili, N. Geetha, H. S. Shetty, S. S. Udikeri, and S. Jogaiah, Remediation of emerging environmental pollutants: A review based on advances in the uses of eco-friendly biofabricated nanomaterials, Chemosphere, 275, 1-19 (2021).
96 T. Ye, Z. Wei, R. Spinney, C. J. Tang, S. Luo, R. Xiao, and D. D. Dionysiou, Chemical structure-based predictive model for the oxidation of trace organic contaminants by sulfate radical, Water Res., 116, 106-115 (2017).   DOI
97 M. Lim and M. J. Kim, Removal of natural organic matter from river water using potassium ferrate(VI), Water. Air. Soil Pollut., 200, 181-189 (2009).   DOI
98 E. Gombos, K. Barkacs, T. Felfoldi, C. Vertes, M. Mako, G. Palko, and G. Zaray, Removal of organic matters in wastewater treatment by ferrate (VI)-technology, Microchem. J., 107, 115-120 (2013).   DOI
99 L. Pachuau, S. M. Lee, and D. Tiwari, Ferrate(VI) in wastewater treatment contaminated with metal(II)-iminodiacetic acid complexed species, Chem. Eng. J., 230, 141-148 (2013).   DOI
100 P. K. Rai, J. Lee, S. K. Kailasa, E. E. Kwon, Y. F. Tsang, Y. S. Ok, and K. H. Kim, A critical review of ferrate(VI)-based remediation of soil and groundwater, Environ. Res., 160, 420-448 (2018).   DOI
101 V. M. Mboula, V. Hequet, Y. Andres, Y. Gru, R. Colin, J. M. Dona-Rodriguez, L. M. Pastrana-Martinez, A. M. T. Silva, M. Leleu, A. J. Tindall, S. Mateos, and P. Falaras, Photocatalytic degradation of estradiol under simulated solar light and assessment of estrogenic activity, Appl. Catal. B Environ., 162, 437-444 (2015).   DOI
102 S. Q. Tian, L. Wang, Y. L. Liu, and J. Ma, Degradation of organic pollutants by ferrate/biochar: Enhanced formation of strong intermediate oxidative iron species, Water Res., 183, 116054 (2020).   DOI
103 G. Anquandah, V. Sharma, D. A. Knight, S. Batchu, and P. Gardinali, Oxidation of trimethoprim by ferrate(VI): Kinetics, products, and antibacterial activity, Environ. Sci. Technol., 45, 10575-10581 (2011).   DOI
104 T. Yang, L. Wang, Y. L. Liu, W. Zhang, H. J. Cheng, M. C. Liu, and J. Ma, Ferrate oxidation of bisphenol F and removal of oxidation products with ferrate resulted particles, Chem. Eng. J., 383, 1-8 (2020).
105 M. R. Yu, Y. Y. Chang, D. Tiwari, L. Pachuau, S. M. Lee, and J. K. Yang, Treatment of wastewater contaminated with Cd(II)- NTA using Fe(VI), Desalin. Wat. Treat., 50, 43-50 (2012).   DOI
106 W. S. Chai, J. Y. Cheun, P. S. Kumar, M. Mubashir, Z. Majeed, F. Banat, S. H. Ho, and P. L. Show, A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application, J. Clean. Prod., 296, 1-6 (2021).
107 A. Talaiekhozani, M. Salari, M. R. Talaei, M. Bagheri, and Z. Eskandari, Formaldehyde removal from wastewater and air by using UV, ferrate(VI) and UV/ferrate(VI), J. Environ. Manage., 184, 204-209 (2016).   DOI
108 G. Li, N. Wang, B. Liu, and X. Zhang, Decolorization of azo dye Orange II by ferrate(VI)-hypochlorite liquid mixture, potassium ferrate(VI) and potassium permanganate, Desalination, 249, 936-941 (2009).   DOI
109 G. R. Xu, Y. P. Zhang, and G. B. Li, Degradation of azo dye active brilliant red X-3B by composite ferrate solution, J. Hazard. Mater., 161, 1299-1305 (2009).   DOI
110 D. Tiwari, Ferrate(VI) a greener solution: Synthesis, characterization, and multifunctional use in treating metal-complexed species in aqueous solution, In: V. K. Sharma, R.-a. Doong, H. Kim, R. S. Varma, and D. D. Dionysiou (eds.). Ferrites and Ferrates: Chemistry and Applications in Sustainable Energy and Environmental Remediation, 161-220, American Chemical Society (2016).
111 J. Chen, Y. Qi, X. Pan, N. Wu, J. Zuo, C. Li, R. Qu, Z. Wang, and Z. Chen, Mechanistic insights into the reactivity of Ferrate(VI) with phenolic compounds and the formation of coupling products, Water Res., 158, 338-349 (2019).   DOI
112 S. Wu, H. Li, X. Li, H. He, and C. Yang, Performances and mechanisms of efficient degradation of atrazine using peroxymonosulfate and ferrate as oxidants, Chem. Eng. J., 353, 533-541 (2018).   DOI
113 S. S. Rashid and Y. Q. Liu, Comparison of life cycle toxicity assessment methods for municipal wastewater treatment with the inclusion of direct emissions of metals, PPCPs and EDCs, Sci. Total Environ., 756, 1-13 (2021).
114 O. Turkay, S. Barisci, and A. Dimoglo, Kinetics and mechanism of methylene blue removal by electrosynthesized ferrate(VI), Sep. Sci. Technol., 51, 1924-1931 (2016).   DOI
115 J. H. Zhu, X. L. Yan, Y. Liu, and B. Zhang, Improving alachlor biodegradability by ferrate oxidation, J. Hazard. Mater., 135, 94-9 (2006).   DOI
116 H. Liu, J. Chen, N. Wu, X. Xu, Y. Qi., L. Jiang, X. Wang, and Z. Wang, Oxidative degradation of chlorpyrifos using ferrate(VI): Kinetics and reaction mechanism, Ecotoxicol. Environ. Saf., 170, 259-266 (2019).   DOI
117 X. D. Li and F. W. Schwartz, DNAPL remediation with in situ chemical oxidation using potassium permanganate. II. Increasing removal efficiency by dissolving Mn oxide precipitates, J. Contam. Hydrol., 68, 269-287 (2004).   DOI